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Abstract

We present Model-based AnalysEs of Transcriptome and RegulOme (MAESTRO), a
comprehensive open-source computational workflow (http://github.com/liulab-dfci/
MAESTRO) for the integrative analyses of single-cell RNA-seq (scRNA-seq) and ATAC-
seq (scATAC-seq) data from multiple platforms. MAESTRO provides functions for pre-
processing, alignment, quality control, expression and chromatin accessibility
quantification, clustering, differential analysis, and annotation. By modeling gene
regulatory potential from chromatin accessibilities at the single-cell level, MAESTRO
outperforms the existing methods for integrating the cell clusters between scRNA-
seq and scATAC-seq. Furthermore, MAESTRO supports automatic cell-type annotation
using predefined cell type marker genes and identifies driver regulators from
differential scRNA-seq genes and scATAC-seq peaks.

Keywords: Single-cell RNA-seq, Single-cell ATAC-seq, Computational workflow,
Integrate scRNA-seq and scATAC-seq, Cell-type annotation, Predict transcriptional
regulators

Background
Cells in a multicellular organism may display tremendous transcriptomic and epigen-

etic heterogeneities. Cellular identity and function are mainly determined by the genes

that are regulated and expressed in the cell [1, 2]. Traditional profiling techniques for

gene expression and cis-regulatory elements through bulk RNA-seq and ATAC-seq,

respectively, are limited in deciphering the heterogeneous gene expression and regula-

tion in complex biological systems [3, 4]. Recent advances in single-cell technologies

enabled the measurements of gene expression and chromatin accessibility at a single-

cell resolution using scRNA-seq and scATAC-seq [5–8]. They provided unprecedented

opportunities to investigate the complex gene regulation mechanisms underlying im-

mune response [9, 10], brain function [11], tumor heterogeneity [12], and
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developmental plasticity [13, 14]. However, these technologies also generate large vol-

umes of data, which pose significant computational challenges.

Although many methods have been developed to analyze single-cell data, several

computational challenges remain to be resolved [15]. First, pre-processing of scRNA-

seq and scATAC-seq datasets can be a complicated task due to the diverse single-cell

indexing strategies. Current workflows that support pre-processing single-cell datasets

from sequencing files are often designed for specific technologies or platforms, such as

Cellranger suites [16] for the 10X Genomics dataset, snapATAC [17] for 10X Genom-

ics scATAC-seq analysis, and Dr.seq2 [18] for droplet-based technologies. Second, most

of the tools for single-cell analysis focus on specific analytical problems instead of pro-

viding an end-to-end workflow from alignment to post-clustering annotations. For ex-

ample, SC3 [19] and SNNCliq [20] are developed for scRNA-seq clustering, scde [21]

and MAST [22] for differential expression, scABC [23] and cisTopic [24] for scATAC-

seq clustering, and chromVAR [25] and Cicero [26] for quantifying the chromatin ac-

cessibility at transcription regulator and gene level, respectively. Even pipelines with

multiple functions, such as Monocle [27], Seurat [28], and Scanpy [29], lack the func-

tion to identify transcription regulators, which is crucial to understand the gene regula-

tory networks that regulate cell state transition and lineage determination [25, 30].

Lastly, current multimodal single-cell technologies, such as scRNA-seq and scATAC-

seq, enable analyses of cellular states and interactions from a holistic view [31]. How-

ever, most of the existing methods only concentrate on one modality. Therefore, work-

flows supporting multiple modalities and their integration are in great need.

In this study, we present the Model-based Analyses of Transcriptome and RegulOme

(MAESTRO) workflow to overcome the computational challenges in analyzing scRNA-

seq and scATAC-seq datasets. First, MAESTRO provides comprehensive functions for

pre-processing, alignment, quality control, and expression- and accessibility quantifica-

tion for scRNA-seq and scATAC-seq data from multiple platforms. Second, MAES

TRO employs the best practices for cell clustering and differential analysis and allows

automatic cell-type annotation and transcriptional regulator inference for both scRNA-

seq and scATAC-seq dataset. Finally, by modeling the chromatin accessibility at the

gene level, MAESTRO outperforms the existing methods in the integrative analysis of

scRNA-seq and scATAC-seq data. To demonstrate the utility of MAESTRO, we ap-

plied it to scRNA-seq and scATAC-seq profiles of bone marrow-derived mononuclear

cells (BMMCs) from a chronic lymphocytic leukemia (CLL) patient and a healthy

donor. We identified distinct cell-type compositions and transcriptional regulators in

the bone marrow microenvironment between the CLL patient and healthy donor and

demonstrated robust transcriptional regulator predictions supported by both scRNA-

seq and scATAC-seq data. MAESTRO provides user-friendly and scalable features to

analyze and integrate scRNA-seq and scATAC-seq data, and its continued maintenance

and update promise to be of great utility to the gene regulation community.

Results
Comprehensive features of the MAESTRO workflow

MAESTRO workflow includes three main modules, for analyzing scRNA-seq, scATAC-

seq, and integrating the two (Fig. 1). Most other single-cell analysis tools start from the
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processed datasets, while MAESTRO supports input from fastq files for a wide variety

of single-cell sequencing-based platforms including Smart-seq for scRNA-seq [32],

microfluidic-based scATAC-seq [7], and barcode-based systems such as 10X Genomics

[16], drop-seq [5, 6], sci-ATAC-seq [33], and d-sci-ATAC-seq. MAESTRO also enables

the most comprehensive post-alignment analysis functions compared to the existing

workflows and provides a full solution for scRNA-seq and scATAC-seq analyses

(Table 1 and Additional file 1: Table S1). In addition, we optimized MAESTRO to

achieve high computational efficiency and scalability in scATAC-seq data analysis. We

benchmarked the running time and memory usage using publicly available scATAC-

seq datasets on peripheral blood mononuclear cells (PBMC, 10k cells) and basal cell

carcinoma (BCC, 38k cells). MAESTRO shows superior performance in terms of CPU

time and memory efficiency. It can handle large datasets of 40k cells while several other

tools crashed due to memory overflow on our computer server with 380 GB total mem-

ory (Additional file 2: Table S2).

We implemented the MAESTRO using the Snakemake workflow management sys-

tem [35], which brings three advantages. First, MAESTRO utilizes Snakemake to deploy

and parallelize jobs on most computing platforms from high-performance servers, clus-

ters, to the cloud. Second, MAESTRO retrieves job descriptions and parameters

through the Snakemake configuration files, so the pipeline can be easily customized for

data from different technologies. Last, the Snakemake workflow keeps track of the pa-

rameters and log files in each step, so it is easy to reproduce the result or fine-tune the

MAESTRO pipeline. Additionally, we provide all the MAESTRO components under

the Conda environment [36] allowing streamlined MAESTRO installation with a single

command.

Multiple levels of quality control

MAESTRO performs quality control (QC) at two levels. The bulk-level QC evaluates

the sample quality by considering all the cells together, while the single cell-level QC

evaluates individual cells and filters low-quality ones from downstream analysis.

Fig. 1 An overview of the MAESTRO workflow. Starting from fastq files, MAESTRO performs pre-processing,
alignment, quality control, expression index for scRNA-seq, peak calling for scATAC-seq, clustering,
differential analysis, cell-type annotation, and transcription factor identification analysis. If scRNA-seq and
scATAC-seq from the same experiment are given, MAESTRO can perform the integration analysis and
annotate the integrated clusters
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We demonstrated the bulk QC metrics on 10X Genomics human PBMC scRNA-seq

(12k cells) and scATAC-seq (10k cells) datasets in Fig. 2. For scRNA-seq, MAESTRO

checks read mappability, distribution of reads in coding regions (CDS) and intronic re-

gions, and coverage of reads over a gene body (Fig. 2a and Additional file 3: Fig. S1a-d,

see the “Methods” section for details). For scATAC-seq, MAESTRO evaluates read

mappability, duplicated reads percentage, fraction of reads mapped to mitochondria

genes and peak regions, and fragment size distribution (Fig. 2b and Additional file 3:

Fig. S1e). MAESTRO also provides the normal ranges of bulk-level QC metrics in

HTML output for users to better evaluate their sample quality.

The single-cell level QC in MAESTRO aims to remove the low-quality cells in single-

cell experiments, which might arise from incompletely captured or dead cells and

empty or overloaded droplets [5, 6]. When processing scRNA-seq data, MAESTRO

Fig. 2 Pre-processing and quality control using MAESTRO. a Mapping summary of human PBMC scRNA-seq
(12k cells) dataset. b Mapping summary of human PBMC scATAC-seq (10k cells) dataset. c Cell filtering plot
of PBMC scRNA-seq. The x-axis represents the number of unique reads/UMIs present in each cell, and the y-
axis represents the number of genes covered in each cell. d Cell filtering plot of PBMC scATAC-seq. The x-
axis represents the number of unique reads present in each cell, and the y-axis represents the fraction of
reads in promoter regions (defined as 2 kb up/downstream of TSS)
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filters cells with few uniquely sequenced reads or UMIs or with few expressed genes

(Fig. 2c) to only keep high-quality cells with enough sequencing depth and gene detec-

tion rates for downstream analyses. For scATAC-seq, MAESTRO evaluates each cell by

the number of unique reads detected in the cell, as well as the fraction of reads in pro-

moter regions as a proxy of signal-to-noise ratio (Fig. 2d). The high-quality and low-

quality cells have distinct distributions when plotted using these metrics, thus can be

clearly separated efficiently (Fig. 2c, d).

Clustering and gene activity modeling

One powerful application of single-cell technology is to de novo discover and annotate

cell types, which relies on the accurate clustering of the cells [37]. MAESTRO inte-

grates Seurat [28] to perform clustering and Presto [38] to perform differential analysis

for scRNA-seq, which was reported to have superior clustering accuracy and running

speed [23] (Fig. 3a). Clustering for scATAC-seq is more challenging, because the large

number of peaks (cis-elements) and the predominantly binary read count at each peak

in each cell from diploid genomes result in bigger yet sparser data matrices. We per-

formed a systematic benchmark analysis using both simulated and published datasets

on published scATAC-seq clustering methods, including scABC [23] and latent seman-

tic indexing [39] followed by graph-based clustering (termed LSI here), cisTopic [24]

followed by density-based clustering (termed cisTopic here), and snapATAC [17]. Our

comparisons, together with a recent study assessing the performance of 10 scATAC-

seq methods [40], suggested that LSI-based method is robust to sequencing depth and

has the overall higher clustering accuracy (Additional file 4: Section A). Besides, LSI

shows the best computing efficiency among all the tools tested (Additional file 2: Table

S2). Therefore, we implemented LSI as the default scATAC-seq clustering method in

MAESTRO but also incorporated cisTopic as an alternative option (Fig. 3b).

Modeling gene activities from scATAC-seq is the key step for understanding the cell-

type identity of each cluster. MAESTRO uses the single-cell regulatory potential to

model gene activities [41]. The presence of scATAC-seq peaks surrounding each gene

reflects the potential transcriptional regulator (TR) bindings and their impact on the

gene expression. Our regulatory potential (RP) model assumes that the effect of a

scATAC-seq peak on the expression of a given gene is independent and additive, which

follows an exponential decay with the distance from the peak to the transcription start

site (TSS) (Additional file 3: Fig. S2, see the “Methods” section). Regulatory potential is

calculated independently for each gene i in each cell j to reflect the accumulated regu-

lation of the surrounding scATAC-seq peaks on the gene i and predict gene i expres-

sion in cell j. Besides increased promoter and enhancer accessibilities, active genes also

have increased accessibility at the exon regions, which might reflect the binding of the

RNA Pol II complex on chromatin during active transcription. In addition, we noticed

that RP calculations could deviate from gene activity by the promoter and exon accessi-

bilities of highly expressed genes nearby. Based on these observations, we implemented

RP models with different combinations and tested their performances in integrating

scATAC-seq with scRNA-seq (Additional file 4: Section B). We set the “enhanced RP

model” with the best association with the gene expression from scRNA-seq as the de-

fault to calculate the gene activity score in MAESTRO, but allow users to pick other
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models. This RP model still weighs peaks by exponential decay from TSS, but sums all peaks

on the given gene exons as if they are on TSS, normalizes the sum by total exon length, and

excludes the peaks from promoters and exons of nearby genes (Additional file 3: Fig. S2).

Automatic cell-type annotation

Annotating cell clusters from scRNA-seq is usually through marker genes from pre-

existing knowledge. However, manual examination of the marker gene expression in

each cluster is time-consuming and can create incompatible annotations between dif-

ferent datasets. MAESTRO could automatically annotate the cell type of clusters based

on input signature files with lists of marker genes for each cell type. By default, MAES

TRO includes signature files for immune cell types from CIBERSORT [42] and brain

cell types [43] and optionally allows users to add custom cell-type signatures (Add-

itional file 5: Table S3). For each cell cluster, MAESTRO calculates the average expres-

sion log fold change of marker genes in this cluster as compared to all the other cells,

and the cell type with the highest expression log fold changes of marker genes is

assigned to the cluster (Additional file 3: Fig. S3a). Clusters with average log fold

change below zero for all the cell-type signatures are left unannotated, as they might

Fig. 3 Clustering, cell-type, and transcriptional regulator annotation using MAESTRO. a UMAP visualization
of human PBMC scRNA-seq (12k cells) clusters. Colors represent the different clusters with the cluster ID
labeled. b UMAP visualization of human PBMC scATAC-seq (10k cells) clusters. Colors represent the different
clusters with cluster ID labeled. c UMAP visualization of human PBMC scRNA-seq (12k cells) clusters. Colors
represent the different cell types. The cell-type information for each cluster is annotated using the
expression level of marker genes. d UMAP visualization of human PBMC scATAC-seq (10k cells) clusters.
Colors represent the different cell types. The cell-type information for each cluster is annotated using the
regulatory potential of marker genes. e The rank of driver transcription regulators in the CD14 monocyte
cells of PBMC scRNA-seq (12k cells). The regulators are ranked by the TF enrichment score from LISA results
in cluster-specific genes, and the color of the circles represents the averaged expression level of
corresponding regulators in CD14 monocyte cells. The names of the top 10 TFs are labeled on the graph. f
The rank of driver transcription regulators in the CD14 monocyte cells of PBMC scATAC-seq (10k cells). The
regulators are ranked by the TF enrichment score from GIGGLE results in cluster-specific peaks, and the
color of the circles represents the averaged regulatory potential of corresponding regulators in CD14
monocyte cells. The names of the top 10 TFs are labeled on the graph
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represent rare populations of previously unknown cell types (see the “Methods” sec-

tion). To annotate the cell identity for scATAC-seq clusters, MAESTRO first uses regu-

latory potential to infer gene expression at the single-cell level. Then, the genes with

differential regulatory potentials in a specific cluster compared to all other clusters can

be used as markers to annotate the cluster cell type as if in scRNA-seq.

We conducted automatic cell-type annotation on clusters from human PBMC

scRNA-seq and scATAC-seq dataset using MAESTRO (Fig. 3a, b) and were able to an-

notate the cell types for both technologies (Fig. 3c, d). Clusters from scRNA-seq display

distinct expression of marker genes, enabling the annotation at both lineage and sub-

lineage levels (Additional file 3: Fig. S3b). In contrast, clusters from scATAC-seq could

only be roughly annotated at the lineage level, suggesting that epigenetic profiles might

reflect more lineage plasticity than transcriptome profiles (Additional file 3: Fig. S3c).

We further compared the performance of MAESTRO cell-type annotation with several

existing software [44, 45]. Using the LM22 immune signature [42], MAESTRO could

successfully annotate the majority of the cell types in a sorted PBMC scRNA-seq data-

set [16] (Additional file 3: Fig. S3d) and with the highest accuracy by median F1-score

(Additional file 3: Fig. S3e). In addition, compared with other annotation tools that

need cross-validation to train a classifier, MAESTRO shows good computational effi-

ciency (Additional file 2: Table S2). Taken together, these results suggest that MAES

TRO could annotate cell types from both scRNA-seq and scATAC-seq accurately and

efficiently.

Inference of transcriptional regulators

In single-cell RNA-seq analyses, identifying the transcriptional regulators which drive

differential expression is crucial to understanding the underlying gene regulatory net-

works [46]. Our lab developed CistromeDB [47], which collected and processed ~ 24,

000 ChIP-seq profiles for ~ 1300 human and mouse transcriptional regulators. With

this comprehensive dataset, MAESTRO incorporates LISA [41] to predict the transcrip-

tional regulators that shape the expression patterns in different scRNA-seq clusters.

LISA builds an epigenetic model based on a list of cluster-specific genes and finds fac-

tors whose binding sites are most likely to regulate these genes. Since transcriptional

regulators from the same family often have similar binding motifs and sometimes simi-

lar binding profiles, we grouped the transcription regulators with similar motifs (Pear-

son’s correlation coefficient of motif profiles > 0.7) [48]. After LISA identifies the

candidate transcription regulators, MAESTRO reports all the regulators in the same

motif group that are expressed (Additional file 3: Fig. S4a, b, Additional file 6: Table S4,

see the “Methods” section). For example, LISA identifies STAT5B as the regulator in

CD8 T cells; however, since the expression of STAT5B is not detected in CD8 T cells,

MAESTRO reports STAT3, STAT4, and STAT1 instead, since they are expressed in

CD8 T cells within the same regulator family (Additional file 3: Fig. S4c, d).

To predict the driver regulators from scATAC-seq clusters, MAESTRO employs the

GIGGLE [49] method to identify the transcription regulators whose publicly available

ChIP-seq profiles are highly enriched in the cluster-specific ATAC-seq peaks. Then,

MAESTRO reports all the regulators that are predicted to be expressed, based on the

regulatory potential, in the same motif family. For example, MAESTRO identified SPI1
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(PU.1), CEBPA, CEBPB, and FLI1 as the top enriched regulators in the PBMC CD14

monocyte scATAC-seq cluster, which have been reported to be the lineage determinant

factors for monocytes [50]. Reassuringly, the regulators identified from scRNA-seq and

scATAC-seq of the same cell type are highly concordant, which increases the confi-

dence of the MAESTRO-predicted driver regulators (Fig. 3e, f).

Integrative analysis of scRNA-seq and scATAC-seq

Previous studies suggested that scRNA-seq has better power in defining cell types with

distinct marker genes, while scATAC-seq is superior for the identification of lineage

determinant regulators [10, 39]. Integrative analysis of scRNA-seq and scATAC-seq

combines the advantages of both data types to provide a deeper understanding of the

gene regulation in the experimental system. To integrate the cells from scRNA-seq and

scATAC-seq, MAESTRO first calculates the regulatory potential for each gene in each

cell, which measures the scATAC-seq reads near the gene weighted by an exponential

decay of the read distance to the gene TSS. Then, MAESTRO performs a canonical

correlation analysis (CCA) [28] between gene expression from scRNA-seq and regula-

tory potential from scATAC-seq. CCA captures the common variance between the two

datasets and projects them into the same low-dimensional space, which essentially

treats the two data platforms as two batches of data from the same platform (Fig. 4a).

A pair of cells, one from scRNA-seq and the other from scATAC-seq, can be anchored

using mutual nearest neighbors after dimension reduction [51]. Then, MAESTRO

transfers the cell-type labels from scRNA-seq to scATAC-seq using the anchored cell

pairs (Fig. 4b). This approach can roughly preserve the original clustering structures

after integration, which allows cell-type labels to be matched between scRNA-seq and

scATAC-seq clusters.

The integration between scRNA-seq and scATAC-seq can improve regulator infer-

ence. After integrating scRNA-seq and scATAC-seq cells, MAESTRO combines the

transcriptional regulators predicted from scRNA-seq (LISA) and scATAC-seq (GIGG

LE) cluster and uses the rank product to combine the two. The final candidate regula-

tors are further filtered based on the regulator expression from scRNA-seq (Fig. 4c, see

the “Methods” section). While the regulators in PBMC clusters that are predicted from

scRNA-seq and scATAC-seq are mostly concordant (Fig. 4d), there are also interesting

differences between the two approaches. For example, RXRA was only predicted to be

a regulator from scATAC-seq in CD14 monocytes (Fig. 4c), and HDAC3 was only pre-

dicted to be a regulator from scATAC-seq in CD8 naive T cells (Additional file 3: Fig.

S5a). RXRA is known to control the innate inflammatory response through the upregu-

lation of chemokine expression in monocytes [52], while HDAC3 has been reported to

restrain the CD8 lineage gene expression and maintain a bi-potential state for

CD4+CD8+ cells [53]. Those examples demonstrate that the transcription regulators

predicted from scATAC-seq are sufficiently meaningful and can complement the pre-

dictions from scRNA-seq.

Integration can also make the prediction of the cis-elements in rare cell types pos-

sible. After transferring labels from scRNA-seq, we re-clustered the cells in the

scATAC-seq data and formed pseudo-bulk samples for each cell type in the human

PBMC dataset, with sub-lineage clusters and rare cell types recovered from scRNA-seq
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(Fig. 4e). To identify potentially rare cis-elements that were missed from the aggregated

peak calls in the earlier step of the scATAC-seq analysis, we called peaks on each cell

cluster separately (Additional file 3: Fig. S5b). Although most of the peaks are already

presented in the aggregated peak calls, in some rare populations such as plasmacytoid

dendritic cells (pDCs), nearly 14% of the peaks are missing in the single-cell aggregated

peak calls (Additional file 3: Fig. S5c). Many of these cluster-specific new peaks, e.g., a

cis-element in the intronic region of TSPAN13 which is specifically accessible in plas-

macytoid dendritic cells (pDCs) (Additional file 3: Fig. S5d,e), might be functional and

regulate nearby genes in a cluster-specific manner.

Analysis of bone marrow microenvironment in healthy donors and CLL patients

To demonstrate the performance of MAESTRO on complex sample types, we applied

it to the scRNA-seq (5k cells) and scATAC-seq (9k cells) dataset of human bone

marrow-derived mononuclear cells (BMMCs) from a healthy donor and a CLL patient.

We first performed the alignment, quality control, clustering, and annotation on

scRNA-seq and scATAC-seq dataset separately, then integrated the two (Fig. 5a, b).

Fig. 4 Integrated analysis of PBMC scRNA-seq and scATAC-seq data using MAESTRO. a UMAP visualization
for joint clustering of human PBMC scRNA-seq (12k cells) and PBMC scATAC-seq (10k cells). Colors represent
the cells from different technologies. The cells are joined by CCA on gene expression level and regulatory
potential from MAESTRO. b UMAP visualization for joint clustering of human PBMC scRNA-seq and scATAC-
seq. The cells are joined by CCA on the gene expression level and regulatory potential from MAESTRO.
Colors represent the cell types, for which are generated using the scRNA-seq dataset and transferred to the
scATAC-seq dataset. c The rank of driver regulators in CD14 monocyte cells of the PBMC dataset. The x-axis
represents the TF enrichment score from LISA results in cluster-specific genes using scRNA-seq; the y-axis
represents the TF enrichment score from GIGGLE results in cluster-specific peaks using scATAC-seq. The
color of the circles represents the averaged expression level of corresponding regulators in CD14 monocyte
scRNA-seq cells, and the size represents the TF enrichment score using GIGGLE in CD14 monocyte scATAC-
seq cells. The names of the top 10 TFs from LISA and GIGGLE are labeled on the graph. d Comparison of
transcriptional regulators predicted using scRNA-seq and scATAC-seq in each cell type for PBMC dataset.
The y-axis represents the Spearman’s correlation coefficient between LISA-predicted TF enrichment score
and GIGGLE-predicted TF enrichment score for all the tested regulators. e Genome browser view of MS4A1
(B cells), CD8A (T cells), and HLA-DQA1 (monocytes and DCs) locus. The pseudo-bulk ATAC-seq profiles are
generated by pooling together cells within each cell type. The y-axis represents the sequence depth-
normalized ATAC-seq signals (reads per million mapped reads (RPM))
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We combined the LM22 signatures as well as signatures from early-stage B cell devel-

opment [42, 54] to annotate the clusters, and identified four different B cell populations

from scRNA-seq (pre-pro B, naive B, CLL 1 and CLL 2) (Fig. 5b and Additional file 3:

Fig. S6a). The cell-type labels were transferred to scATAC-seq clusters after integration

(Fig. 5b and Additional file 3: Fig. S6b).

We next investigated cell population changes in the CLL patient compared to the

healthy donor. As expected, the two CLL clusters (CLL1 and CLL2) are mainly in the

CLL patient, while the pre-pro B cell and naive B cell population are almost exclusively

in the healthy donor (Fig. 5c). This observation suggests the dominance of malignant

cells in the bone marrow of the CLL patient. Interestingly, immune cell diversity is

much higher in the healthy donor compared to the CLL patient, with higher fractions

of CD4 T, CD8 naive T, NK, monocyte, and mast cell populations. The only expanded

population in CLL patients is CD8 activated T cells, supporting the major role of cyto-

toxic CD8 T cells in anti-tumor activity in CLL patients (Fig. 5c). Cell-type composition

estimates are consistent between scRNA-seq and scATAC-seq, demonstrating MAES

Fig. 5 The dramatic change of bone marrow microenvironment in a CLL patient versus a healthy donor. a
UMAP visualization for joint clustering of human BMMC scRNA-seq (5k cells) and scATAC-seq (9k cells) from
the CLL patient and the healthy donor. Colors represent the cells from different technologies. The cells are
joined by CCA on gene expression level and regulatory potential from MAESTRO. b UMAP visualization for
joint clustering of human BMMC scRNA-seq (5k cells) and scATAC-seq (9k cells) from the CLL patient and
the healthy donor. The cells are joined by CCA on gene expression level and regulatory potential from
MAESTRO. Colors represent the cell types, which are generated using the scRNA-seq dataset and transferred
to the scATAC-seq dataset. c Cell-type proportions of the CLL patient and the healthy donor. The total
number of cells in each sample (CLL patients or healthy donors) should add up to 1. The scRNA-seq and
scATAC-seq are quantified separately. Statistic significance is evaluated using two proportion z test, ***p <
2.2e−16, *p≤ 0.05, N.S.p > 0.05. d The rank of driver regulators in CLL1 (left) and CLL2 (right) cluster of the
BMMC dataset. The x-axis represents the TF enrichment score from LISA result on differentially expressed
genes between CLL1 and CLL2 clusters in scRNA-seq; the y-axis represents the TF enrichment score from
GIGGLE result on differential peaks between CLL1 and CLL2 clusters in scATAC-seq. The color of the circles
represents the averaged expression level of regulators in corresponding clusters of scRNA-seq, and the size
represents the TF enrichment score using GIGGLE in corresponding clusters of scATAC-seq. The names of
the top 10 TFs from LISA and GIGGLE are labeled on the graph
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TRO’s ability to robustly integrate scRNA-seq and scATAC-seq data from tissue sam-

ples with complex composition.

Our analysis suggests that the majority of B cells from the CLL patient are clustered into

two distinct populations. The CLL1 cluster still preserves the ability to express IGHM, a

gene highly expressed in pre-pro B cell and naive B cells (Additional file 3: Fig. S6c). The

CLL2 cluster highly expresses RGS1 (Additional file 3: Fig. S6d), which was reported to be

associated with poor prognosis in B cell malignancies [55]. Hypothesizing that distinct regu-

lators might drive gene expression in these two CLL populations, we applied MAESTRO to

identify the cluster-specific regulators using the differentially expressed genes from scRNA-

seq and differentially accessible peaks from scATAC-seq data between CLL1 and CLL2

clusters. Consistent with the gene expression pattern, the top predicted regulators in the

CLL1 cluster are similar to the regulators in naive B cells, such as SPI1 and CREBBP (Fig. 5d

and Additional file 3: Fig. S6e, f). In contrast, the top MAESTRO-predicted regulators in the

CLL2 cluster include TP53 and FOXP1, indicating that CLL2 might represent a distinct ma-

lignant cell population. TP53 is a well-known tumor suppressor and is frequently mutated

or deleted in CLL patients [56], while FOXP1 was reported to have an oncogenic role in B

cell lymphoma and associated with poor clinical outcome [57, 58]. In summary, these re-

sults demonstrated MAESTRO’s utility in identifying transcriptional regulators from both

scRNA-seq and scATAC-seq datasets in complex samples.

MAESTRO outperforms other methods in integrating scATAC-seq with scRNA-seq

Finally, we sought to benchmark different computational methods, including SnapA-

TAC, cicero, Seurat, and MAESTRO, on the performance of integrating scATAC-seq

regulatory activities with scRNA-seq data. We evaluated the performance using three

independent datasets: dataset #1, from the human PBMC from different donors (12k

cells scRNA-seq and 10k cells scATAC-seq); dataset #2, from the human PBMC from

the same donor (2k cells scRNA-seq and 10k cells scATAC-seq); and dataset #3, from

the human BMMC from the same donor (5k cells scRNA-seq and 9k cells scATAC-

seq, Fig. 6 and Additional file 3: Fig. S7). After label transfer using CCA, we generated

the label prediction score distribution for all three datasets. Compared to the other

three methods, the integration using MAESTRO regulatory potential model has overall

higher prediction scores and a larger number of cells with high-quality predictions, de-

fined as prediction score > 0.5 (Fig. 6a, Additional file 3: Fig. S8a, Additional file 7:

Table S5). For dataset #1, cicero failed to align memory B cells, CD 16 monocytes, and

DC cells, and snapATAC failed to align pDC cells (Additional file 3: Fig. S7 and

Additional file 7: Table S5). All of the tested methods failed to align CD4T naive,

macrophage, and mast cells. The failure in integration might be due to the under-

representation of macrophage and mast in the scATAC-seq dataset, as the scRNA-seq

samples and scATAC-seq samples were collected from different donors. We indeed did

not observe the macrophage and mast marker gene activity from the scATAC-seq data-

set (Additional file 3: Fig. S8b, c). In addition to these cell types in PBMC dataset from

the different donors, MAESTRO has a 100% transfer rate for three datasets at the clus-

ter level (Additional file 7: Table S5).

We further evaluated the consistency between gene regulatory activities from

scATAC-seq after label transfer and gene expression levels from scRNA-seq in the

Wang et al. Genome Biology          (2020) 21:198 Page 12 of 28



same cell type. Again, MAESTRO showed the best consistency in almost all the cell

types, whether the correlation was calculated using all the genes or only the top 2000

variable genes (Fig. 6b and Additional file 3: Fig. S8 d,e). Collectively, these analyses

suggest that MAESTRO has the best performance not only in aligning the cells be-

tween scATAC-seq and scRNA-seq, but also in predicting the gene expression level

from scATAC-seq.

To test the scalability of MAESTRO in handling large and complex single-cell data-

set, we performed the integration analysis on a public basal cell carcinoma (BCC)

scRNA-seq (53k cells) and scATAC-seq (38k cells and 0.5M peaks). MAESTRO could

successfully cluster, annotate, and integrate scRNA-seq and scATAC-seq dataset (Add-

itional file 3: Fig. S9). This demonstrates MAESTRO’s scalability and potential to be

used in consortium projects for scRNA-seq and scATAC-seq such as Tabula Muris

[59] and Human Cell Atlas [60].

Discussion and conclusions
The recent development of single-cell technologies has brought paradigm shifts to in-

vestigating cellular diversity from a multi-omic perspective. While these technologies

have wide applications in understanding complex biological systems such as tumor,

brain, and immune and developmental systems, they also create numerous computa-

tional challenges. MAESTRO is a comprehensive analysis workflow that provides full

analysis solutions for integrating scRNA-seq and scATAC-seq on multiple single-cell

platforms. Compared with existing tools, the regulatory potential model adopted by

MAESTRO is superior in integrating scATAC-seq data with scRNA-seq. In addition,

the automatic cell-type annotation from MAESTRO is very useful, especially since the

increasing number of single-cell datasets makes manual annotation more impractical.

Fig. 6 MAESTRO outperforms the existing software in integrating scRNA-seq and scATAC-seq dataset. a Comparison
of the cell-type label prediction score distribution after integration of the scRNA-seq and scATAC-seq using gene
activity scores from MAESTRO, Seurat, snapATAC, and cicero. The comparisons were made on three independent
datasets: PBMC from different donors, PBMC from the same donor, and BMMC from the same donor. Statistical
significance was evaluated using Wilcoxon rank-sum test. b Comparison of the consistency between gene expression
and gene activity scores from MAESTRO, Seurat, snapATAC, and cicero. The comparisons were made on three
independent datasets. The x-axis represents the different cell types, and the y-axis represents the Spearman’s
correlation coefficient between the expression level from scRNA-seq and gene activity score from scATAC-seq within
each cluster. Only the top 2000 highly variable genes were used in the analysis
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Although several methods have been developed for identifying regulators from scRNA-

seq or scATAC-seq, most of them rely heavily on motif information and ignore cell

type-specific TF binding [17, 24, 25]. Using the comprehensive collection of ChIP-seq

profiles on more than 1300 transcriptional regulators from CistromeDB, MAESTRO

can robustly identify relevant regulators from both scRNA-seq and scATAC-seq data-

sets, and allow users to visualize the integrated predictions. We implemented MAES

TRO using the Snakemake workflow [35] and deposited the package under the Conda

environment, which allowed MAESTRO to be installed and executed with simple com-

mands. These features make MAESTRO an effective workflow for comprehensive and

integrative analysis of scRNA-seq and scATAC-seq data.

MAESTRO models gene expression activity from scATAC-seq using a combination

of two models: one related to the effects of cis-regulatory elements, the other related to

the effects of transcription. The first is a regulatory potential model that has shown

great efficacy in modeling the effect of TFs on regulating gene expression [41, 61]. The

second considers the peaks on exon regions, which includes possible alternative pro-

moters, and removes interfering signals from adjacent promoters and exons. The com-

bined model showed the best performance in gene expression prediction using

scATAC-seq data. Recently, another model proposed in ArchR (Granja et al.) also uses

the regulatory potential model [41, 61] in combination with a gene body component to

model the gene activity from scATAC-seq [62]. ArchR uses a gene boundary model to

exclude interference from other genes, although in cases such as near-neighbor diver-

gently transcribed gene pairs, this is likely to eliminate many real long-range cis-regula-

tory effects [63, 64]. In terms of gene body accessibility, ArchR considers the whole

gene body while MAESTRO uses only the exon regions. Despite these differences, both

MAESTRO and ArchR can model gene expression activity from scATAC-seq well, with

comparable performance in integrating scATAC-seq with scRNA-seq.

Despite the aforementioned merits, MAESTRO still has some limitations which de-

serve future development. For example, in transcriptional regulator inference, informa-

tion on the TF motifs bound by collaborating TFs might provide additional insights to

distinguish the different family members to complement the clues from gene expres-

sion. Future machine learning approaches to infer TF binding sites from chromatin ac-

cessibility profiles could help improve this function. Currently, MAESTRO is able to

handle large single-cell datasets of one million cells by processing all the gene expres-

sion and peak quantification matrices in the compressed sparse matrix format and

stored using HDF5. However, MAESTRO analysis functions were built in R, so they

have limited memory and processing efficiency. Future migration of the framework

functions from R to Python and Cython, and deployment of the workflow on the Cloud

will improve MAESTRO’s capability in handling even bigger single-cell datasets.

The current integrated functions of MAESTRO, which support the analysis of

scRNA-seq and scATAC-seq, can be adapted to other single-cell gene regulation tech-

niques such as single-cell ChIP-seq [65], cut & tag [66], or spatial transcriptomics [67].

As single-cell datasets accumulate over time, MAESTRO not only provides a scalable

and uniform workflow to process these data, but also benefits from these data in en-

hancing MAESTRO functions. For example, with more cell-type gene signatures gener-

ated from scRNA-seq datasets, the automatic cell-type annotation in MAESTRO will

be more precise and could be further improved using supervised classification methods
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such as scmap [45, 68] and cellAssign [69]. If more scATAC-seq datasets become avail-

able, MAESTRO could generate a comprehensive atlas of cell type-specific regulatory

landscapes. This atlas can in turn facilitate cell clustering, annotation, and regulatory

modeling. We foresee MAESTRO becoming an important tool to help biologists with

scRNA-seq and scATAC-seq data to derive a deeper understanding of cellular hetero-

geneity and regulatory dynamics.

Methods
MAESTRO pipeline

Data formatting and barcode demultiplexing

MAESTRO supports multiple scRNA-seq and scATAC-seq platforms. ScRNA-seq from

Smartseq2 protocols and scATAC-seq from microfluidics protocols do not need bar-

code demultiplexing. ScRNA-seq with variable barcodes like Drop-seq, inDrop, and

10X Genomics are demultiplexed using STARsolo according to the given barcode

whitelist. ScATAC-seq data from sci-ATAC-seq, dsci-ATAC-seq, or 10X Genomics are

demultiplexed using custom python codes.

Alignment, sorting, and duplicates removal

After demultiplexing, reads are aligned to the hg38 or mm10 genome. MAESTRO uses

STAR solo mode [70] to align the scRNA-seq reads and minimap2 short-read mapping

mode to align the scATAC-seq reads. All alignments are then sorted by genome coord-

ination using samtools [71]. PCR duplicates from the same barcodes are removed using

the MarkDuplicates function from Picard tools.

ScRNA-seq quality control and barcode selection

MAESTRO performs quality control for scRNA-seq in two aspects: the bulk and

the single-cell levels. At the bulk level, MAESTRO summarizes the mapping statis-

tics, reads quality, GC content, nucleotide composition bias, reads distribution, and

gene body coverage using RseQC [72]. The percentage of mapped reads indicates

sample quality, as sample contamination or improper processing could decrease

mappability. The CDS read distribution checks proper RNA processing and library

preparation, which ensures accurate expression quantification. And the gene body

coverage evaluates sample read bias over 3′ or 5′ of the transcripts. At the single-

cell level, MAESTRO applies the following criteria to select high-quality barcodes:

(1) the barcode should be found in more than 1000 unique reads or UMIs, (2)

The barcode should be found in at least 500 genes, (3) no more than 5% of the

reads containing this barcode could be aligned to the mitochondria genome, and

(4) if spike-in is available, no more than 5% of the reads containing this barcode

are spike-in reads. Only barcodes passing the single-cell QC are labeled as high-

quality cells and used for downstream expression quantification and clustering ana-

lysis. All the QC parameters are configurable and can be tuned accordingly.

ScATAC-seq quality control and barcode selection

MAESTRO performs quality control for scATAC-seq in two aspects as for scRNA-seq.

At the bulk level, MAESTRO summarizes the mapping statistics and the fraction of
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mitochondria reads and reads in promoter regions and peak regions, and generates the

fragment size distribution using custom codes. The percentage of duplicated reads

shows whether the library is over-amplified due to limited starting material. The per-

centage of reads in mitochondria genes and peak regions is a widely used metric to

evaluate the signal-to-noise ratio of ATAC-seq data quality [1]. The last feature for

bulk-level QC is fragment periodicity, which examines the insert size distribution of the

sequenced fragments. It should show a periodicity of approximately 200 bp due to nu-

cleosome protection of the chromatin to transposase cutting [3]. At the single-cell level,

MAESTRO applies the following criteria to select high-quality barcodes. (1) The bar-

code should be found in more than 1000 unique reads. (2) At least 10% of the reads

containing the barcode should present in gene promoter regions. We observed that the

peak calls from the single-cell aggregated data sometimes are dominated by the major

populations, and barcodes filtering using the fraction of reads in peak regions (FRiP

score) might eliminate the rare populations from the sample. Therefore, we used the

fraction of reads in promoter regions instead of the FRiP score to filter the barcodes.

(3) No more than 10% of the reads containing this barcode could be aligned to the

mitochondria genome. Only barcodes passing the single-cell QC are labeled as high-

quality cells and used in the downstream analysis. All the QC parameters are configur-

able and can be tuned accordingly.

ScRNA-seq expression quantification

MAESTRO applies different algorithms to calculate the reads/UMI count from differ-

ent scRNA-seq platforms. Data from Smartseq2 protocol are processed using RSEM to

generate the read count for each transcript [73]; data from Drop-seq or 10X Genomics

platform are quantified using STARsolo. By default, MAESTRO stores all the data in

memory in a sparse matrix and save the data to disk with HDF5 format, in order to

achieve memory efficient and improve the scalability of MAESTRO.

ScATAC-seq peak calling and binarization

For scATAC-seq data using microfluidics protocols, only cells passing QC are merged

and called for peaks. For scATAC-seq data using sci-ATAC-seq, 10X Genomics, or

other barcoded protocols, aligned bam files are directly used for peak calling. MAES

TRO performs peak calling using MACS2 on the single-cell aggregated data [74], with

the options set as “-B -q 0.05 –nomodel –extsize=50 --SPMR.” Peaks overlapping with

ENCODE blacklist [75] are removed, and only peaks from autosome and chromosomes

X and Y are used in the downstream analysis. MAESTRO also provides the option to

add custom-defined cis-elements for downstream analysis. In the scATAC-seq dataset,

the accessible elements in every single cell should be either on or off (1/0) due to the

nature of the diploid genome. After peak calling, MAESTRO calculates the peak count

for each barcode that passes QC and then converts the peak count matrix to binary

matrix using custom python codes.

Normalization

MAESTRO adopts Seurat for scRNA-seq normalization. By default, MAESTRO em-

ploys the global scaling normalization method in Seurat to scale the expression in each
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cell to 10,000, then log-transformed the result. For scATAC-seq data, no additional

normalization methods are used if LSI or cisTopic is used for the clustering analysis

[24, 39]. If scABC is used for clustering analysis, the peak matrix will be weighted by

the total number of peaks present in each cell [23].

Feature selection

For scRNA-seq data, MAESTRO employs the FindVariableFeatures function in Seurat

to identify genes that exhibit high cell-to-cell variation [28]. By default, MAESTRO uses

the variance-stabilizing transformation (vst) to adjust the variance and returns the top

2000 genes with the highest standardized variance. No feature selection is performed

for the scATAC-seq dataset, and all input peaks were used in the downstream dimen-

sion reduction analysis.

Dimension reduction and determine significant components

For the scRNA-seq dataset, before dimension reduction, MAESTRO scales the expres-

sion matrix to make sure that the mean expression of each gene across cells is 0, and

the variance across cells is 1. The users can also remove unwanted variations like mito-

chondrial contamination, different stages of cell cycle at this step, by providing un-

wanted variations as features to regress out. After scaling, MAESTRO performs

principal component analysis (PCA) on top variable features to reduce the dimension

of the dataset. An elbow plot is used to visualize the variance of each PC and identify

the “elbow” point to determine the significant PCs. If not set, the top 15 PCs are se-

lected by default for downstream analysis. For the scATAC-seq dataset, both PCA and

LSI are provided for dimension reduction. For LSI analysis, MAESTRO first computes

the term frequency-inverse document frequency (TF-IDF) on the scATAC-seq peak

count matrix, followed by singular value decomposition (SVD) to reduce the dimen-

sionality to 50. Among our benchmark, TF-IDF transformation followed by SVD, Lou-

vain algorithm for distance calculation, and K-nearest neighbor (KNN) analysis for

cluster identification had the best performance in terms of clustering accuracy and

structure; we thus set LSI as the default dimension reduction method for scATAC-seq

data analysis. MAESTRO also adopts cisTopic to conduct topic modeling and reduce

the dimension of the dataset; if cisTopic is selected, by default, 30 topics are used in

the cisTopic analysis.

Clustering

MAESTRO employs the graph-based clustering method in Seurat for scRNA-seq clus-

tering analysis. Briefly, MAESTRO first builds a K-nearest neighbor (KNN) graph using

the reduced dimensions from the previous step and then refines the edge weights be-

tween two cells based on the Jaccard similarity of their neighborhoods, this function is

adopted from the FindNeighbors function in Seurat. To cluster the cells, MAESTRO

uses the FindClusters function, which applies the Louvain algorithm to cluster cells to-

gether iteratively. The default clustering resolution for scRNA-seq is set to 0.6, and

users can also tune the parameters for different conditions. For scATAC-seq clustering,

if LSI is used, MAESTRO will perform similar graph building and cluster identifications

like scRNA-seq analysis, and the default clustering resolution is set to 0.6. If cisTopic is
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used, MAESTRO performs Uniform Manifold Approximation and Projection (UMAP)

[76] analysis on the cell-topic distributions to further reduce the dataset to two dimen-

sions and then applies a density-based clustering method DBSCAN [77] to identify po-

tential clusters; the default reachability distance is set to 0.75, and reachability

minimum number of points is set to 10. If scABC is used, by default, MAESTRO sets K

to 10 for the K-medoid clustering analysis.

Visualization of single-cell clusters

The clustering results from both the scRNA-seq and scATAC-seq are visualized using

UMAP. The UMAP function is already included in Seurat and cisTopic. To visualize the

clustering result of scABC, MAESTRO adopts the uwot package and performs the UMAP

analysis using the Spearman’s correlation between different cells as the distance [23].

Differential expression and peak calling

For the scRNA-seq analysis in MAESTRO, we optimized the FindAllMarkers function

in Seurat to perform differential expression and identify the positive markers for each

cluster. The default differential expression method is achieved using “presto,” a fast ver-

sion of the Wilcox rank-sum test implemented in R, and other methods that had been

already incorporated in Seurat like ROC, t test, MAST, and DESeq2 are also supported

[22, 38, 78]. Genes with a log fold change greater than 0.25, minimum presence fraction

in cells of 0.25, and p value less than 1E−5 are identified as marker genes for each clus-

ter. For the scATAC-seq analysis, MAESTRO first normalizes the binary peak count

matrix by the number of peaks presented in each cell, then performs the differential

peak analysis using “presto” on the normalized peak count matrix. Peaks with logFC

greater than 0.1, minimum presence fraction in cells of 0.01, and p value less than 1E

−5 are identified as cluster-specific peaks for each cluster. All these threshold parame-

ters are tunable in the MAESTRO package.

Regulatory potential score to quantify gene activity at the single-cell resolution for scATAC-

seq

To model the gene activity from scATAC-seq, MAESTRO calculates the gene regula-

tory potential score for each gene in each cell using matrix multiplication based on the

formula below.

R ¼ WTB

Matrix B is a binary matrix output from the single-cell ATAC-seq peak calling and

binarization, and Bij represents the occurrence peaki in cellj. Matrix W represents the

regulatory potential matrix, and Wij represents the weight of regulatory potential of

each peaki to each genej calculated from an exponential function on the distance be-

tween the center of peaki and the transcription start site of genej (dij) with a half-decay

of d0:

Wij ¼ 2 −
dij
d0

The d0 can be customized by users, and our recommendation is that 1 kb shall be

used for promoter-driven regulation and 10 kb shall be used for enhancer-driven
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regulation, and the default d0 for scATAC-seq is set to 10 kb. For a given genej, if dij of

peaki is over 150 kb, the weight Wij will be less than 0.0005 if d0 is 10 kb. To save the

computation time, we set the Wij as 0 if the peak to TSS distance is over 150 kb. In an

“enhanced RP model,” we did further adjustments to the weights. If the peaki is located

at the exons region of the genej, the weight Wij is set to 1 first (as if dij = 0), then fur-

ther normalized by total exon length of the genej (i.e., Wij = 1/total_exon_length); and if

the peaki is located in the promoter or exon regions of any nearby genes, then Wij is

set to 0 (i.e., the peak is excluded). After the matrix multiplication, the matrix R stores

the final scores of regulatory potential, in which Rij represents genei’s regulatory poten-

tial score in cellj.

Cell-type annotation based on differentially expressed or regulated genes

MAESTRO performs automatic cell-type annotation in a supervised manner, which re-

quires the pre-existing knowledge of marker genes for each cell type. Given the gene

signatures of each cell type, for each cluster, MAESTRO calculates the summed logFC

(cells in one cluster versus all other cells, which could be both positive or negative) of

marker genes divided by log2 total number of marker genes as the cell-type scores of

the input gene signature; the cell type of gene signature with the highest score is anno-

tated as the cell-type identity of that cluster. The minimum gene signature score is set

to 0, and if the score of all input signatures is less than 0, the cluster will be annotated

as “others.” By default, the immune LM22 gene signature from CIBERSORT [42] is

used to annotate the cell types (Additional file 2: Table S2); we have also included sig-

natures from adult mouse brain and Tabula Muris in the MAESTRO package [43], and

other user-defined signatures are also supported. For the scATAC-seq dataset, MAES

TRO performs the cell-type annotation using the gene regulatory potential to represent

the gene expression, and the logFC of gene regulatory potential between one cluster

and all the other cells is used to calculate the gene signature scores.

Cell-type annotation of scATAC-seq clusters based on bulk chromatin accessibility data

MAESTRO supports automatic cell-type annotation for scATAC-seq dataset using the

publicly available bulk chromatin accessibility data. To generate a high-quality annota-

tion index for scATAC-seq clusters, we first clustered the chromatin accessibility data-

sets (DNase-seq and ATAC-seq) in the Cistrome database into 80 clusters [47]. Each

Cistrome cluster identity was determined by the majority of cell type or tissue type in-

formation of datasets within that cluster. Then, the identity was assigned to all the

datasets within that cluster. MAESTRO utilizes GIGGLE to evaluate the enrichment of

bulk chromatin accessibility peaks on cluster-specific peaks from scATAC-seq data. It

then transfers the Cistrome cluster annotation from the most enriched bulk chromatin

accessibility data to the scATAC-seq cluster as its cell-type annotation.

Prediction of driver regulators for scRNA-seq and scATAC-seq

Based on the marker genes or the cluster-specific peaks from each cluster, MAESTRO

could predict the potential driver transcription regulators in each cell type. For the

scRNA-seq dataset, MAESTRO incorporates LISA [41], which utilizes the transcrip-

tional regulator binding profiles from CistromeDB [47] to identify the potential
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regulators shaping the expression pattern of each cluster. LISA first models the epigen-

etic landscape based on the input marker genes as well as public epigenomic profiles

(DNase-seq, H3K27ac ChIP-seq) in CistromeDB, then performs in silico detection of

TF binding sites on the epigenetic landscape to evaluate the essentiality of the tran-

scriptional regulators. All the candidate regulators are ranked by their expression

within that cluster to identify potential significant ones. For scATAC-seq, MAESTRO

utilizes GIGGLE [49] to evaluate the enrichment of transcriptional regulator ChIP-seq

peaks on cluster-specific peaks from scATAC-seq data. The GIGGLE score is a com-

posite of -log10 p value and log2 odds ratio after querying regulator peaks in the

cluster-specific peaks. For the ChIP-seq dataset of the same factor, only the dataset

with the highest GIGGLE score is kept. All the candidate regulators are further ranked

by its RP within that cluster to identify potential significant ones. Currently, 1314 regu-

lators, including both transcription factors and chromatin regulators, are supported in

MAESTRO regulator analysis.

Transcription factor clustering based on motif similarities

To improve the transcription factor prediction and correct the enrichment scores,

MAESTRO clusters transcription factor based on motif similarities. We downloaded

769 and 529 positional weight matrices (PWM), which represent 680 human and 453

mouse transcription factors from the HOCOMOCO v11 database, respectively [48].

Within each species, the similarity between TF motif models is calculated using the

CCAT PWMclus tool [79], which uses the Pearson correlation coefficient (PCC)

weighted by information content as the similarities. We clustered the PWMs by hier-

archical clustering and identified the motif clusters with the threshold of similarity

greater than 0.7. For humans, 257 PWM clusters were identified and 109 of them con-

tains two or more PWMs (Additional file 5: Table S3). The highest enrichment score of

TFs within the same motif clusters is assigned to all the TFs belong to that cluster, and

the TFs are further ranked by the averaged expression level for scRNA-seq and regula-

tory potential level for scATAC-seq in that cluster. TFs with mean expression level

equal to 0 or RP level less than 0.5 are filtered from the output. The driver TF candi-

dates of the cluster should have both significant enrichment scores and expression

levels.

Visualization of marker genes or enriched regulators

MAESTRO provides two functions, “VisualizeVlnplot” and “VisualizeUMAP,” for the

visualization of the expression level or regulatory potential of marker genes or regula-

tors in scRNA-seq and scATAC-seq datasets. Besides, MAESTRO provides a genome

browser function “ATACViewTracks” for visualizing the scATAC-seq signals across

the chromosome in different clusters. For better visualizing the predicted regulators,

MAESTRO provides the function named VisualizeTFenrichment to generate the TF

rank plot (as Fig. 3e, f and Fig. 4c) and only output the top 100 regulators in each clus-

ter. The size of the point reflects the enrichment score of TFs from LISA for scRNA-

seq and GIGGLE for scATAC-seq, and the color indicates the expression level from

scRNA-seq or regulatory potential scores from scATAC-seq. If regulators are predicted

from both scRNA-seq and scATAC-seq, MAESTRO will combine the ranks using the
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rank product and use the combined ranks to determine the top regulators. The candi-

dates with gene expression levels equal to 0 are further removed from the output.

Integrative analysis of scRNA-seq and scATAC-seq clusters

MAESTRO integrates the scRNA-seq and scATAC-seq clusters with canonical correl-

ation analysis (CCA) and provides joint visualization of the cells together. The scRNA-

seq clusters with cell-type annotations are generated in previous steps. The scATAC-

seq clusters are generated based on the peak count matrix as described before. MAES

TRO then attaches the gene regulatory potential matrix to the scATAC-seq clusters,

scales and log-transforms the RP matrix, identifies variable features, and then combines

the scRNA-seq clusters with scATAC-seq clusters using the FindTransferAnchors

function incorporated in Seurat. After identifying the transfer anchors, the cell-type an-

notation from scRNA-seq clusters can be transferred to scATAC-seq clusters using the

TransferData function. To visualize all the cells in the same low dimensional space,

MAESTRO uses the same anchors during the label transferring analysis and imputed

the scRNA-seq gene expression using scATAC-seq regulatory potential score on highly

variable genes from scRNA-seq, for which default is set to the top 2000 variable genes.

The measured scRNA-seq and imputed scRNA-seq data are then merged together and

scaled to normalize the variance and mean. Finally, MAESTRO performs PCA for di-

mension reduction and uses UMAP to visualize all the cells together.

Summary result and HTML output

For users to better understand the results from the MAESTRO workflow, we provide

output files in HTML format to summarize the mapping statistics, quality control ana-

lysis from RseQC, single-cell QC plot, clustering result, cell-type annotation result, and

transcription regulator predictions from LISA or GIGGLE. The HTML output contains

three different sections, the scRNA-seq page, the scATAC-seq page, and the integration

page (Additional files 8, 9, and 10). The description of each result and the normal range

of QC metrics are also included in the HTML output.

Clustering evaluation based on the simulated scATAC-seq dataset

To benchmark the clustering performance of different methods on scATAC-seq datasets,

we generated the simulated scATAC-seq dataset from bulk ATAC-seq experiments. The

BAM files of ATAC-seq from 10 different cell types were downloaded from CistromeDB,

using the accession numbers GSM1817207, GSM1876022, GSM2083780, GSM2243034,

GSM2243040, GSM2386582, GSM2439074, GSM2476338, GSM2692563, and

GSM2898847. We randomly sampled the reads from each BAM file and simulated 200

single-cell ATAC-seq datasets at 4 different sequence depths, which are 1000, 2500, 5000,

and 10,000 total reads. For each sequencing depth, 2000 cells were generated in total for

the 10 cell types. Then, we merged the simulated bam files and called peaks, generated

the peak by cell binary count matrix, and performed clustering analysis using scABC, cis-

Topic, and LSI. For scABC, we set k = 10 for the k-means-based clustering. For cisTopic,

the topic number used was 30. For LSI, the top 50 dimensions are used after TF-IDF con-

version, and the clustering resolution was set to 0.6. For snapATAC, we created a cell-by-

bin matrix with 5 kb bin size for each sequencing depth and performed clustering using
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the default parameters in snapATAC. The clustering accuracy was evaluated using the

normalized mutual information (NMI), with 0 representing no mutual information and 1

representing perfect match between two different labels, and was calculated using the “ari-

code” [80] package in R.

Clustering evaluation based on the published scATAC-seq dataset

We evaluated the clustering performance on public scATAC-seq datasets from 7 mixed

cell lines (GSE65360 from GEO), cells from HSC lineages (GSE74310 and GSE96772

from GEO), and scATAC-seq from 10k PBMC cells [81]. All the datasets were proc-

essed using the MAESTRO workflow from the fastq files. Cells with less than 1000

unique fragments or less than 10% of promoter enriched reads were removed from the

analysis. For scABC, we set k = 10 for the k-means-based clustering. For cisTopic, the

topic number used was 30. For LSI, the top 50 dimensions are used after TF-IDF

conversion, and the clustering resolution was set to 0.6. For snapATAC, we created a

cell-by-bin matrix with 5 kb bin size for each dataset and performed clustering using

the default parameters in snapATAC. For 7 cell line mixed dataset and HSC differenti-

ation dataset, the original cell-type labels were used to calculate the NMI. For the

PBMC dataset, we adopted the Residual Average Gini Index (RAGI) score from a re-

cent publication to evaluate the clustering performance [82]. We then calculated the

averaged GINI index of marker genes from scRNA-seq between different clusters and

compared them to the averaged GINI index calculated using housekeeping genes

(https://m.tau.ac.il/~elieis/HKG/HK_genes.txt). The difference of the averaged GINI

index between marker genes and housekeeping genes was defined as RAGI scores.

Analysis of 10X Genomics PBMC scRNA-seq and scATAC-seq dataset

The PBMC 12K scRNA-seq dataset and 10K scATAC-seq dataset from different do-

nors (Dataset #1) were downloaded from the 10X Genomics website (https://support.1

0xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc8k, https://support.1

0xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k, https://support.1

0xgenomics.com/single-cell-atac/datasets/1.1.0/atac_v1_pbmc_10k). We merged the

two scRNA-seq datasets together and confirmed that there is no significant batch effect

between these two datasets. The PBMC 2K scRNA-seq and 10K scATAC-seq dataset

from the same donor (dataset #2) were generated and shared by 10X Genomics. We

processed all the PBMC datasets from fastq files using MAESTRO, with all parameters

set to default. After clustering, we first annotated the cell type automatically using the

LM22 gene signature from CIBERSORT, then manually corrected the annotation result

and added annotations for some of the rare populations like pDC.

Analysis of 10X Genomics BMMC scRNA-seq and scATAC-seq dataset

The 5K scRNA-seq and 9K scATAC-seq of BMMCs from a healthy donor and a CLL

patient were generated and shared by 10X Genomics (dataset #3). We converted the

bam files to fastq files using the bamtofastq function from CellRanger and processed

the dataset using MAESTRO with all default parameters. To get a comprehensive un-

derstanding of the immune microenvironment change between the healthy donor and

the CLL patient, we merged the scRNA-seq from the BMMC healthy donor and the
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CLL patient, and also merged the corresponding scATAC-seq datasets, and the ran

MAESTRO on the merged dataset using RNA module and ATAC module, respectively.

Then, we integrated the clusterings from RNA and ATAC analyses. The scRNA-seq

clusters were first annotated using LM22 gene signatures; however, as the BMMC

microenvironment contains plenty of premature B cells, we further manually checked

the expression of SELL, MME, CD19, MS4A1, CD79A, IGHM, and IGHD and modi-

fied the misannotated cell types manually. By default, MAESTRO identifies driver regu-

lators for each scRNA-seq and scATAC-seq clusters. To identify the differential

regulators from CLL1 and CLL2 clusters, we also used MAESTRO to identify the regu-

lators based on differential expressed genes and differential peaks between CLL1 and

CLL2 clusters.

Analysis of 10X Genomics basal cell carcinoma scRNA-seq and scATAC-seq dataset

We downloaded the processed expression matrix of 53K scRNA-seq from BCC micro-

environment from the GEO database (GSE123814). Then, we performed the clustering

analysis using MAESTRO with default parameters. The cell types for the scRNA-seq

clusters were annotated using the meta-information provided in the original study. The

BCC 38K scATAC-seq fragments and peak files were downloaded from the GEO data-

base (GSE129785). We then lifted over the fragments and peaks from hg19 to hg38 and

calculated the binarized peak count matrix based on the fragments and peak files. The

gene activity scores were calculated using TSS 10K “enhanced RP model” in MAES

TRO. Before clustering, we first filtered out the peaks only present in less than 50 cells

and cells with less than 500 peaks. After clustering, we performed differential analysis

and annotated the cell types using the annotations from the original study [83]; we in-

tegrated the scATAC-seq with scRNA-seq using MAESTRO and transferred the cell-

type labels from scRNA-seq to scATAC-seq.

Evaluation of cell-type annotation performance using MAESTRO, Garnett, and SCINA

We used the published sorted PBMC dataset from Zheng et al. to evaluate the annota-

tion performance of cell-type annotation [16]. The dataset was downloaded and down-

sampled from a recent evaluation study [84], which guaranteed each cell type has

exactly 2000 cells. For SCINA, we first performed quantile normalization on the log-

transformed expression matrix and annotated the dataset with the LM22 gene signa-

ture. For Garnett, we performed 5-fold cross-validation to train the classifier with both

the LM22 gene signature and a simple immune cell-type signature from the Garnett

package. For MAESTRO, we clustered all the cells with default parameters and anno-

tated them using the LM22 gene signature. We adopted the median F1-score from

Abdelaal et al., which measures the test accuracy by 2 × precision × recall/(precision +

recall). All cell types, including both NK, T cell, B cell, monocyte, and granulocyte,

were used to calculate the median F1-score.

Evaluation of integration results from MAESTRO, Seurat, SnapATAC, and cicero

We integrated scRNA-seq and scATAC-seq using gene body accessibility score from

snapATAC, co-accessibility gene score from cicero, promoter and gene body accessibil-

ity score from Seurat, and gene regulatory potential (TSS 10K “enhanced RP model”)
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from MAESTRO. All the integration analyses were performed using the CCA-based

method and default parameters. We evaluate the integration performance from two as-

pects. The first aspect is to evaluate the performance of cell alignment between

scRNA-seq and scATAC-seq. After label transferring using Seurat v3 [28], we com-

pared the distribution of the maximal label prediction scores for the integration using

four different methods. Cells with a maximal prediction score higher than 0.5 are de-

fined as having a high-quality prediction. Cells with low prediction scores were re-

moved from the downstream analysis. We then compared the number of cells with

high-quality prediction in each cluster using four different methods, to evaluate how

confidently each method can align scATAC-seq with scRNA-seq (Additional file 7:

Table 5). Another aspect is the consistency between gene expression level from scRNA-

seq and gene activities from scATAC-seq. We grouped the scRNA-seq and scATAC-seq

cells based on the cell-type annotation from scRNA-seq and calculated the averaged gene

expression in scRNA-seq and averaged scATAC-seq gene accessibility scores for

scATAC-seq for each gene. We then calculated the genome-wide Spearman’s correlation

coefficients between gene expression levels and gene accessibility levels, and the correl-

ation reflected whether the gene activity score from scATAC-seq is a confident predictor

of gene expression. In addition, we also calculated the averaged gene expression and gene

accessibility score only on the top 2000 variable genes which were used in the integration

analysis. We evaluated the consistency using Spearman’s correlation coefficient. The p

value of the correlation was determined by the cor.test in R.
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