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Abstract 

Background:  Cell-cell interactions are important for information exchange between 
different cells, which are the fundamental basis of many biological processes. Recent 
advances in single-cell RNA sequencing (scRNA-seq) enable the characterization of 
cell-cell interactions using computational methods. However, it is hard to evaluate 
these methods since no ground truth is provided. Spatial transcriptomics (ST) data 
profiles the relative position of different cells. We propose that the spatial distance sug-
gests the interaction tendency of different cell types, thus could be used for evaluating 
cell-cell interaction tools.

Results:  We benchmark 16 cell-cell interaction methods by integrating scRNA-seq 
with ST data. We characterize cell-cell interactions into short-range and long-range 
interactions using spatial distance distributions between ligands and receptors. Based 
on this classification, we define the distance enrichment score and apply an evaluation 
workflow to 16 cell-cell interaction tools using 15 simulated and 5 real scRNA-seq and 
ST datasets. We also compare the consistency of the results from single tools with the 
commonly identified interactions. Our results suggest that the interactions predicted 
by different tools are highly dynamic, and the statistical-based methods show overall 
better performance than network-based methods and ST-based methods.

Conclusions:  Our study presents a comprehensive evaluation of cell-cell interaction 
tools for scRNA-seq. CellChat, CellPhoneDB, NicheNet, and ICELLNET show overall 
better performance than other tools in terms of consistency with spatial tendency and 
software scalability. We recommend using results from at least two methods to ensure 
the accuracy of identified interactions. We have packaged the benchmark workflow 
with detailed documentation at GitHub (https://​github.​com/​wangl​abton​gji/​CCI).

Keywords:  Cell-cell interaction, Benchmarking, scRNA-seq, Spatial transcriptomics, 
Spatial interaction tendency
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Background
Cell-cell interactions (CCIs) are essential to various biological processes in multicellular 
organisms [1]. The biological behavior of a cell is regulated by its intracellular regula-
tory network and extracellular signaling environment at the same time and can eventu-
ally decide the function of that cell [2, 3]. In the multicellular interacting network, cells 
can interact and influence each other’s behavior through specific signaling molecules, 
including ligands, receptors, metabolites, ions, and structural or secreted proteins [4], 
leading to dynamic changes in cellular functions. Understanding how the cells interact 
with each other will help to reveal the potential mechanisms behind biological pro-
cesses, such as organ development [5, 6] and tumor progression [7, 8].

With the advanced development of single-cell RNA sequencing (scRNA-seq), several 
computational tools are designed to infer CCIs through integrating gene expression 
from scRNA-seq data and ligand-receptor information [3, 4, 9]. These CCI tools rely 
on different models to simulate the background and evaluate the enrichment of ligand-
receptor interactions over the background, which could be largely classified into 3 types 
(Table 1). The first type of method, statistical-based CCI tools, applies a statistical test to 
quantify the probability of each interaction over null hypotheses, such as CellPhoneDB 
[10] and CellChat [11]. The second type, network-based CCI tools, uses a more com-
plex network model to weigh ligand-receptor interactions between cell types. For exam-
ple, NicheNet integrates the intracellular gene regulatory information into the network 
model for better evaluating the possibilities of CCIs [12]. The third type, ST-based CCI 
tools, integrate spatial information to correct interactions predicted by gene expression, 
for instance, CellPhoneDB v3 [13] only focuses on interactions between cell types in the 
same spatial microenvironment. Although these CCI tools can infer a series of interac-
tions using the annotated scRNA-seq data, a key question remains that the accuracy of 
inferred CCIs is not tested since there is no golden standard dataset for benchmarking 
them [4, 14]. Experimental validate these interactions is labor-intensive and only a few 
pairs can be validated at the same time. Alternative strategies that could benchmark the 
accuracy of predicted CCIs are in great demand.

It is well-known that CCIs in the tissue environment are strongly determined by the 
spatial structures [26], and knowing the spatial positions between different cells can pro-
vide further information for their interaction possibilities and is independent of gene 
expression. In general, CCIs can be classified into 4 types, autocrine, juxtacrine, parac-
rine, and endocrine with increasing signaling ranges [4]. Among them, autocrine and 
juxtacrine only occur on cells themselves or contacted cells, while paracrine and endo-
crine could have spatially long-range effects. The recent development of spatial tran-
scriptomics (ST) enables the recording of gene expression and spatial position of cells at 
the same time [26, 27], which could be used to characterize the spatial distance tendency 
of known interactions. While most CCI tools predict the interactions only using scRNA-
seq, the consistency of interaction’s spatial distance tendencies and the actual spatial cell 
type distribution could be used to evaluate the possibility of inferred CCIs. For example, 
juxtacrine relies on the physical contact between cells, indicating that juxtacrine-type 
CCI has a high tendency to happen in spatially adjacent cells [4]. If a CCI tool predicted 
such juxtacrine-type CCIs between two spatially distal cell types, the predicted CCIs will 
have low confidence since juxtacrine-type CCIs cannot occur on noncontact cells.
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Table 1  CCI tools included in this study

Tools Method Subunit Prior knowledge Language Ref.

Statistical-based tools
  CellCall Embedded pathway 

activity analysis for activity 
score; hypergeometric 
testing for significance of 
pathway activity

Single subunit Ligand-receptor pairs; 
downstream TF regula-
tion

R [15]

  CellChat Law of mass action for 
communication probabil-
ity; permutation test for 
significant interactions

Multi-subunit Ligand-receptor pairs; 
signaling cofactors and 
pathways

R [11]

  CellPhoneDB The mean of average 
ligand and receptor 
expression values for 
interaction enrichment; 
permutation test for 
significant interactions

Multi-subunit Ligand-receptor pairs Python [10]

  ICELLNET Product of ligand and 
receptor expression 
values for communication 
score; geometric mean for 
multi-subunit complexes; 
Wilcoxon statistical test 
for highly potential inter-
actions

Multi-subunit Ligand-receptor pairs R [16]

  iTALK Finding differentially 
expressed ligand and 
receptor genes between 
cell types

Single subunit Ligand-receptor pairs R [17]

  SingleCellSignalR Regularized product of 
ligand and receptor for 
lr-score; estimate lr-score 
cutoff for filtering interac-
tions

Single subunit Ligand-receptor pairs R [18]

Network-based tools
  Connectome Cell types as nodes, inter-

actions as edges; gene-
wise z-score of ligand 
and receptor expression 
values as edge weights; 
system-wide Wilcoxon 
rank sum test for signifi-
cant edges filtering

Single subunit Ligand-receptor pairs R [19]

  CytoTalk Integrate two de novo 
intracellular signaling 
networks by known 
ligand-receptor interac-
tions; optimal subnetwork 
searching for significant 
interactions

Single subunit Ligand-receptor pairs R [20]

  Domino Construction global 
signaling network; cluster 
specific signaling subnet-
work for prediction

Multi-subunit Ligand-receptor pairs; TF 
regulation

R [21]

  NATMI Cell types as nodes, inter-
actions as edges; mean 
expression or specificity 
for edge weights; edge 
weight ranks for confident 
interactions

Single subunit Ligand-receptor pairs Python [22]
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Here, we defined and validated the spatial distance tendencies of known ligand-recep-
tor interactions using ST data and separated them into long-range and short-range 
interactions. Based on this, we developed a method to evaluate CCI tools using the 
coherence between expected and observed spatial distance tendencies by integrating 
scRNA-seq and ST data. We also evaluated the consistency of predicted CCIs between 
different methods. We applied the benchmark method on 16 CCI tools in 15 simulated 
and 5 real datasets and summarizes these results to rank their performances. Finally, we 
evaluated the running time and memory efficiency of different tools. Our results suggest 
that the statistical-based method show in general better performance, and integrating 
results from two or more CCI tools will generate high-confidence CCI predictions.

Results
Definition of interactions ranges for ligand‑receptor pairs by spatial transcriptomics data

To define the interaction range, we first extracted all the ligand-receptor interactions in 
CellChatDB [11], a ligand-receptor database used in CellChat. Interactions with multi-
subunit complexes were rearranged into single-subunit interactions (see “Methods”). 
CCIs can be separated into 4 types based on their interaction distance including auto-
crine, juxtacrine, paracrine, and endocrine [4]. However, it is hard to evaluate endocrine 
in the local tissue environment, and the autocrine also cannot be easily separated from 
juxtacrine since both of them have a relatively short interaction range. Considering this, 
we just separate all the ligand-receptor interaction pairs into short-range and long-range 
interactions instead of 4 types (Fig. 1a, see “Methods”).

Table 1  (continued)

Tools Method Subunit Prior knowledge Language Ref.

  NicheNet Weighted network prior 
knowledge model; com-
pute ligand activity and 
regulatory potential score 
using network propaga-
tion; select interactions by 
potential score

Single subunit Ligand-receptor pairs; 
ligand-target pairs; 
receptor-target pairs

R [12]

  scMLnet Construct primary 
ligand-receptor, TF-target, 
receptor-TF subnetworks 
using highly expressed 
genes; merge three sub-
networks as final output

Single subunit Ligand-receptor pairs; 
receptor-TF pairs; TF-
target pairs

R [23]

ST-based tools
  CellPhoneDB v3 L-R expression for enrich-

ment; permutation test 
for significance; filter inter-
actions based on spatial 
microenvironment

Multi-subunit Ligand-receptor pairs; 
spatial microenvironment

Python [13]

  Giotto Spatial proximity for 
interacting cell types; 
spatial co-expression for 
interactions

Single subunit Ligand-receptor pairs; cell 
type colocalization; L-R 
co-expression

R [24]

  stLearn Identify interactions by 
L-R co-expression and cell 
type density

Single subunit Ligand-receptor pairs; cell 
type colocalization; L-R 
co-expression

Python [25]
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We collected 5 different ST datasets to define the range of the interactions com-
prehensively, including a human pancreatic ductal adenocarcinoma (PDAC) data-
set [28] and a human squamous cell carcinoma (SCC) dataset [29] from the tumor 

Fig. 1  Defining and validating short-range and long-range interactions. a The illustration of short-range and 
long-range interactions. b The workflow of defining short-range and long-range interactions. First, generate 
spatial ligand and receptor gene distributions from ST data and calculate the Wasserstein distance between 
them. Next, perform permutation test on the Wasserstein distance to get the interaction’s spatial tendency 
and its confidence for filtering short-range and long-range interactions. d_real: the actual Wasserstein 
distance between ligand and receptor gene distributions; d_simulation: the Wasserstein distance between 
two permuted ligand and receptor gene distributions; d_ratio: the ratio of actual Wasserstein distance 
and average permuted Wasserstein distance, indicating the spatial tendency of interaction; one-sided 
P-value: indicate the confidence of interaction’s spatial tendency. c The actual numbers of short-range, 
medium-range, and long-range interactions in each sample. Color for interaction tendency type, green: 
short-range; yellow: medium; red: long-range. PDAC: pancreatic ductal adenocarcinoma; SCC: squamous cell 
carcinoma. d The interaction type proportion in short-range and long-range interactions. Color for interaction 
type, blue: secreted signaling type interaction; orange: cell-cell contact type interaction. e The GO analysis 
results of short-range (left) and long-range (right) interactions’ ligands in the sample P2_rep2 in the SCC 
dataset
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microenvironment (TME), a mouse cortex dataset [30] from the nervous system 
and a human heart dataset [31], and a human intestinal dataset [32] to represent 
the developmental system setting, all of these data were generated with matched 
scRNA-seq. For each sample in the ST dataset, we applied a permutation-based pro-
cedure to identify sample-specific short-range and long-range interactions (Fig. 1b). 
The spatial distribution distance of each ligand and receptor gene could be meas-
ured by the Wasserstein distance, a metric commonly used to define the distance 
between probability distributions. Then we permutated the spot position on the ST 
slides randomly and calculated the ratio of the real Wasserstein distance and per-
mutated distance between ligand and receptor distributions as d _ ratio. Finally, we 
generated a distribution of d _ ratio using all ligand-receptor pairs and filtered the 
reliable short-range and long-range interactions based on the distribution and sig-
nificance of the P-value (Fig. 1b, see “Methods”).

We next compared the identified short-range and long-range interactions between 
different samples. The actual number of filtered short-range and long-range inter-
actions varied across samples (Fig.  1c) and is positively correlated with the gene 
coverage of the sample (Additional file  1: Fig. S1a-b). Although we could observe 
short-range and long-range interactions in each sample, the number is relatively 
small compared to the number of all interactions (Fig. 1c and Additional file 1: Fig. 
S1c). This result suggested that the spatial distance tendency of CCIs consistently 
existed among different biological systems, but only a few ligand-receptor pairs rep-
resented a significant and constant tendency among different cell types.

Short‑range and long‑range interactions have distinct biological features

We next validated the functional features of the identified short-range and long-
range interactions. Interactions in CellChatDB are classified into cell-cell contact 
and secreted signaling based on their known protein structures and biological path-
ways. We compared the enrichment of short-range and long-range interactions in 
different ligand-receptor categories. Not surprisingly, more than 90% percentage of 
the short-range interactions belong to the cell-cell contact type except for the mouse 
cortex, while long-range interactions are mostly secreted signaling (Fig.  1d). We 
further performed gene ontology (GO) enrichment analysis on the ligand genes of 
short-range and long-range interactions. In the sample P2_rep2 from the SCC data-
set, the short-range interaction genes were enriched in cell-cell junction-associated 
biological processes and cellular components, including cell-cell junction assembly 
and cell adhesion molecule binding, which play a crucial role in regulating cell con-
tact formation and stability [33, 34] (Fig.  1e). By contrast, long-range interaction 
genes were enriched in many signaling pathways that have a wide regulatory range, 
such as the ERBB signaling pathway [35] (Fig.  1e). Similar functional enrichments 
for short-range and long-range interactions are observed in other datasets. Taken 
together, these analyses suggest that the classification of short-range and long-range 
interactions could accurately reflect their interaction distance and functional prop-
erties, which could serve as a basis for our followed evaluations.
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CCI evaluation workflow

We designed a comprehensive workflow to evaluate the accuracy of inferred CCIs 
from scRNA-seq data based on the expected and observed spatial distance tenden-
cies (Fig. 2 and Additional file 1: Fig. S2). The short-range and long-range interactions 
defined using ST data could serve as expected spatial distance tendencies. Next, we 
applied 15 widely used CCI tools and a baseline method based on the product of L-R 
expression (named LR product) to infer CCIs. These 15 CCI tools include statistical-
based methods such as CellCall [15], CellChat [11], CellPhoneDB [10], ICELLNET 
[16], iTALK [17], and SingleCellSignalR [18]; network-based methods such as Con-
nectome [19], CytoTalk [20], Domino [21], NATMI [22], NicheNet [12], and scMLnet 
[23]; and ST-based methods such as CellPhoneDB v3 [13], Giotto [24], and stLearn 
[25] (Table  1). As scRNA-seq does not have the spatial information, we integrated 
them with matched ST dataset and evaluated the cell type distribution distance using 
the relative positions of spots from ST, which could serve as the observed spatial dis-
tance tendencies (Fig.  2). The consistency between expected and observed spatial 
tendencies could be used to evaluate the possibility of CCIs to happen in the real tis-
sue environment, for which were calculated using a distance enrichment score (DES) 
similar to the ES score used in gene set enrichment analyses [36] (see “Methods”). 
Besides the consistency with spatial distance tendencies, we also defined the over-
lapped interactions shared by multiple CCI tools as a standard to evaluate the similar-
ity of results from different tools (Fig. 2, see “Methods”). Finally, we summarized the 
DES metrics and F1 score to common interactions to evaluate the performance of 
CCI tools.

Fig. 2  Schematic overview of evaluation workflow. First, generate known ligand-receptor pairs from 
CellChatDB, then select short-range and long-range interactions from known pairs for each dataset (top left). 
Next, perform spatial cell type annotation on ST data coupled with matched scRNA-seq data, and define near 
and far distributed cell type pairs based on the annotation (medium left). Then feed annotated scRNA-seq 
data to CCI tools and extract predicted results (bottom left). Finally, evaluate tools’ performances on both 
distance enrichment score and the metric of commonly identified interactions
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Evaluation using simulated datasets

To demonstrate our DES metric could accurately reflect the performance of CCI tools, 
we simulated 15 paired scRNA-seq and ST data with overexpression of known ligand-
receptor pairs. In each round of the simulation, we randomly selected four cell types 
and subseted original scRNA-seq and ST data based on selected cell types. Then we ran-
domly mapped cells to ST spots according to their cell types and replace the original 
expressions in ST data. Next, L-R pairs will be randomly selected for each cell type pair 
and their original expression signals will be replaced with overexpressed signals using a 
semi-synthetic method [37]. Finally, we filtered simulated CCIs to keep short/long-range 
interaction consistent with the spatial distance of cell type pairs and generated the final 
simulated scRNA-seq and ST data (Fig. 3a, Additional file 1: Fig. S3, see “Methods”). For 

Fig. 3  Evaluation using simulated datasets. a The schematic illustration of data simulation procedure. The 
long box indicates the LR pair between two cell types, where its face color represents interaction type and 
edge color represents expression state. The rounded rectangles indicate cell types and edge color represents 
distance type between cell types. b The DES ranks of CCI tools evaluating using 15 simulated datasets. Tools 
are sorted by the median DES. c The F1 ranks of CCI tools evaluating using 15 simulated datasets. Using 
simulated interactions as the positive set. Tools are sorted by the median F1 score
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the 3 different biological systems used in our study (TME, nervous and developmental 
system), we selected one sample of data for each biology system and performed 5 round 
simulations for each sample. Finally, we evaluated these tools using 15 simulated data-
sets (Fig.  3b, c). CellChat, ICELLNET, and CellPhoneDB displayed high-ranked DES, 
while Giotto, scMLnet, and stLearn showed relatively poor performance (Fig. 3b). We 
also evaluated these tools by simply comparing the overlaps between predicted CCIs 
with simulated CCIs. Using simulated CCIs in each cell type pair as the positive set, we 
computed the F1 score for each tool. Consistently, CellPhoneDB, CellChat, and ICELL-
NET still show high F1 score ranks similar to DES rank (Fig. 3c). Interestingly, the statis-
tical-based tools tend to have better performance than network-based or ST-based tools 
on simulated datasets. Taken together, these results suggest that our DES metric is com-
parable to the F1 score of ground truth in measuring the performance of different CCI 
tools.

Evaluation using real datasets

Human pancreatic ductal adenocarcinomas (PDAC) dataset

The first dataset we used is from the PDAC tumor microenvironment. Using the 
matched scRNA-seq data with cell type annotations (Additional file  1: Fig. S4a), 
we annotated the spots in ST data of sample PDAC-A into 7 cell types (Fig. 4a and 
Additional file  1: Fig. S4b), including CD8+ T cells, ductal cells, endothelial cells, 
two cancer cell populations (Malignant class1, Malignant class2), mast cells, and 
monocytes or macrophages.

We detected a total of 193 ligand-receptor interactions in the PDAC-A sample 
(Fig. 1c). Among these interactions, there were 7 short-range interactions and 7 long-
range interactions used for evaluation (Additional file 1: Fig. S1c and Fig. S4c). Reassur-
ingly, the distributions of ligand and receptor expression had large overlapped areas for 
short-range interactions such as EFNB1–EPHB4, while for long-range interactions such 
as POSTN– (ITGAV+ITGB5), the ligand and receptors were distributed away from 
each other (Additional file  1: Fig. S4d). We next defined 11 near cell type pairs and 4 
far cell type pairs by integrating scRNA-seq with ST data, which could be used as the 
distance for inferred CCIs (Additional file 1: Fig. S4e-f ). The DES could be calculated as 
the enrichment of distance for inferred CCIs over the expected interaction ranges (see 
“Methods”). SingleCellSignalR, NicheNet, ICELLNET, CellChat, and CytoTalk showed 
a high-ranked DES, while CellCall, iTALK, and Domino are not consistent with spatial 
information (Fig. 4b, averaged result using all 2 PDAC samples). For similarity metrics 
with commonly identified interactions, CellPhoneDB, ICELLNET, and CellPhoneDB v3 
were top-ranked by F1 score, and Giotto had the lowest F1 score (Fig. 4c). CellPhoneDB 
and CellPhoneDB v3 ranked first and second in precision across all the other tools, 
indicating high specificities of their results. As for the recall, SingleCellSignalR and 
ICELLNET performed well, which meant that they have a higher ability in identifying 
common interactions in the PDAC dataset. We also noticed that most of the tools with 
the top-ranked F1 score were statistical-based tools while network-based and ST-based 
tools had a generally lower F1 score. Several network-based tools such as NicheNet and 
CytoTalk showed a high-ranked DES but they failed to find more commonly identified 
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interactions. This result suggested that the commonly identified interactions were likely 
biased dependent on the selected methods.

We visualized the overall predicted interaction networks of all cell types using the 
numbers of interactions, and most of the CCI tools shared a similar pattern (Additional 
file 1: Fig. S4g). For example, the Mono/Macro and ductal cells were commonly thought 
to be the major interacting cell types since the segments of these two cell types had the 
biggest sizes across most tools (Additional file 1: Fig. S4g, pink and sky blue). The pat-
terns of Connectome, scMLnet, and Giotto were quite different from other tools and 
failed to find interactions between several cell types. For example, the interactions of 
malignant class 2 cells as receivers were totally missed in the scMLnet result. These anal-
yses may also explain why scMLnet and Connectome did not get a high rank in rela-
tive accuracy metrics. Although most CCI tools shared an overall similar interaction 

Fig. 4  Evaluation results in the human PDAC dataset. a Spatial cell type annotation result of ST data of 
sample PDAC_A in the human PDCA dataset. Color indicates the spot’s cell type. b The box plot of tools’ 
average distance enrichment scores (DES) evaluated using all samples (PDAC_A, PDAC_B) in the human 
PDAC dataset, sorted by the median DES. c The box plots of tools’ average relative accuracy metrics (F1 score, 
precision, recall) evaluated using all samples (PDAC_A, PDAC_B) in the human PDAC dataset, all sorted by the 
median F1 score. d The heatmap shows the average common interaction number between each tool’s result 
per cell type in the sample PDAC_A. Color displays the interaction number. The bar plot on the top shows the 
average interaction number predicted by each tool per cell type pair. The actual number is labeled on the 
top of each bar. e The dot plot of top 10 most common interactions among all tools in the sample PDAC_A, 
sorted by interaction’s common count. The dot size indicates the top rank percentage of the interaction 
in corresponding tool’s result. The dot color reflects interaction’s spatial distance tendency in the sample 
PDAC_A. The CCI tools are grouped by their model types
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pattern, the exact number of predicted interactions and common interactions varied 
largely across tools (Fig. 4d). NicheNet predicted the largest number of interactions per 
cell type (147), while Domino and scMLnet only have very few predicted CCIs even we 
tuned the parameters (4) (Fig. 4d).

We next focused on specific interactions and analyzed the top 10 common interactions 
among different tools (Fig.  4e). The most common interaction was ANGPTL4–SDC4, 
which interacted from Mono/Macro cells to malignant class2 cells; 5 tools could success-
fully predict it. Besides that, only 5 interactions existed in more than 3 tools’ results. This 
again reflected that the results between different tools varied largely. In addition, the sta-
tistical-based tools contributed to common interactions more than network-based tools. 
CellChat, CellPhoneDB, and SingleCellSignalR had similar patterns of identified interac-
tions. Meanwhile, CellCall, Domino, NATMI, and scMLnet had no overlap between top 
common interactions. Interestingly, the top 10 common interactions that we found in 
the sample PDAC_A are all short-range and medium-range interactions, with no long-
range interactions, indicating a relative cold TME (Fig. 4e). Our analyses showed that the 
statistical-based methods have an overall better performance in the PDAC TME data.

Human squamous cell carcinoma (SCC) dataset

Next, we applied our benchmark workflow on another TME dataset from the SCC, here 
using sample P2_rep2 for demonstration. We identified 7 cell types in ST data using its 
paired scRNA-seq data, including B cell, dendritic cell, endothelial, fibroblasts, a merged 
cluster for monocytes and macrophages, and two types of epithelial (normal and malig-
nant epithelial, Fig. 5a, Additional file 1: Fig. S5a-b). Different from the PDAC TME, the 
SCC TME is mainly composed of malignant epithelial cells, with only a few immune 
cells infiltrated [29].

We identified 460 known ligand-receptor interactions in sample P2_rep2 (Fig.  1c), 
with 24 short-range and 24 significant long-range (Additional file  1: Fig. S1c). The 
ligand-receptor distance distribution was similar to the distribution in the PDAC data-
set (Additional file 1: Fig. S4c and S5c), and the peak of the d _ ratio distribution was 
closer to 1.0, indicating a spatial interaction tendency toward short-range interactions. 
For example, the interactions DSG1–DSC3, LAMA3–(ITGA3+ITGB1), and DLL1–
NOTCH1 (Additional file 1: Fig. S4d) were all short-range interactions, which rely on 
the physical contact between ligand and receptor. DSG and DSC were consistently 
observed to present the colocalization on the apposed cell surfaces in desmosomes 
and form the basic adhesive unit of desmosomes [38]. LAMA3 binds to its high-affin-
ity receptor and mediates the attachment and migration of cells [39]. Different from 
short-range interactions, long-range interactions have distinct spatial distributions. For 
example, for the FGF7–FGFR2 interaction, the FGF7 was mainly expressed in the upper 
section of the malignant cells, while the FGFR2 was expressed in the bottom section, 
indicating a long-range interaction between different malignant cells (Additional file 1: 
Fig. S5d). We found 3 near cell type pairs and 6 far cell type pairs in 15 cell type pairs, 
which might be caused by the high malignant epithelial proportion in the TME that 
separates different cell types (Additional file 1: Fig. S5e-f ).

We then evaluated the CCI consistency with spatial information. Similar to the 
results in PDAC, CellChat, ICELLNET, NicheNet, and CellPhoneDB ranked in the 
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top 4 by DES, indicating their stable performance in the TME (Fig. 5b, averaged result 
using all 3 SCC samples). CellPhoneDB showed the best consistency with the com-
monly identified interactions in the SCC dataset, with Connectome and ICELLNET 
ranked as top 2 and 3 (Fig. 5c). These three tools also showed a high rank in the PDAC 
dataset (Fig. 4b, c). Although the evaluation using DES or using common interactions 
are stable in the TME, they show different properties of CCI tools, with NicheNet, 
ICELLNET, and CellChat having better consistency with spatial information, and 
CellPhoneDB, Connectome showing better overlap with common interactions.

Interestingly, although malignant cells are abundant in the TME according to the 
ST data, the number of interactions of malignant cells predicted by different tools 
did not display a comparable dominant fraction (Additional file 1: Fig. S5g, red). The 
less abundant immune cells and fibroblasts, on the other hand, are involved in a large 

Fig. 5  Evaluation results in the human SCC dataset. a Spatial cell type annotation result of ST data of sample 
P2_rep2 in the human SCC dataset. Color indicates the spot’s cell type. b The box plot of tools’ average 
distance enrichment scores (DES) evaluated using all samples (P2_rep2, P5_rep3, P10_rep1) in the human 
SCC dataset, sorted by the median DES. c The box plots of tools’ average relative accuracy metrics (F1 score, 
precision, recall) evaluated using all samples (P2_rep2, P5_rep3, P10_rep1) in the human SCC dataset, all 
sorted by the median F1 score. d The heatmap shows the average common interaction number between 
each tool’s result per cell type in the sample P2_rep2. Color displays the interaction number. The bar plot on 
the top shows the average interaction number predicted by each tool per cell type pair. The actual number 
is labeled on the top of each bar. e The dot plot of top 10 most common interactions among all tools in the 
sample P2_rep2, sorted by interaction’s common count. The dot size indicates the top rank percentage of the 
interaction in corresponding tool’s result. The dot color reflects interaction’s spatial distance tendency in the 
sample P2_rep2. The CCI tools are grouped by their model types



Page 13 of 38Liu et al. Genome Biology          (2022) 23:218 	

number of interactions (Additional file 1: Fig. S5g, royal blue, sky blue, and yellow). 
This could explain that although the overall spatial interaction tendency is toward 
short-range interactions, we could still identify many long-range interactions (24) 
since the immune cells and fibroblasts are distributed far away (Additional file 1: Fig. 
S5e-g). The common interactions identified by different tools increased compared to 
PDAC datasets, maybe because of a larger number of detected interactions (Fig. 5d). 
However, for most of the tools, the overlaps with common interactions are still less 
than 25%, indicating a highly dynamic result between different tools (Fig. 5d). The sta-
tistical-based methods still have more consistent interactions with each other, which 
could be also observed if we focused on the top 10 common interactions (Fig. 5d, e). 
Taken together, the two datasets from the TME suggest a short-range interaction ten-
dency between different cell types. NicheNet is the best tool that is consistent with 
spatial information, while statistical-based methods like CellChat and CellPhoneDB 
showed a balanced performance both on spatial information and consistency with 
commonly identified interactions.

Mouse cortex dataset

The nervous system is known to have clearly defined layer structures. We applied our 
workflow to a mouse cortex dataset from the nervous system. After spatial cell type 
annotation, we identified 13 cell types in ST data (Fig. 6a), including 7 types of gluta-
matergic cells (L2/3 IT, L4, L5 IT, L5 PT, L6 CT, L6 IT, L6b), 2 types of GABAergic cells 
(parvalbumin, somatostatin), and 4 types of non-neuronal cells (astrocyte, macrophage, 
oligodendrocyte, vascular and leptomeningeal cell). The different types of glutamatergic 
cells were named based on their layer-specific marker and layer enriching dissections 
[40], which could be successfully reconstructed by the ST data (Fig. 6a, Additional file 1: 
Fig. S6a-c).

The spatial interaction tendency of ligand-receptor pairs in the mouse cortex data-
set showed a long-tail distribution with a preference for long-range interactions, which 
might be due to the large spot number and the concave shape of the tissue (Additional 
file  1: Fig. S6d). We observed fewer interactions with a d _ ratio less than 1 and more 
interactions with a d _ ratio larger than 3. We used 723 ligand-receptor interactions with 
76 short-range interactions and 76 long-range interactions to evaluate the CCI tools 
(Additional file  1: Fig. S1c). All three short-range interactions that we showed display 
spatially colocalized patterns (Additional file  1: Fig. S6e). The neurexin (NRXN) and 
neuroligin (NLGN) are neuronal cell surface proteins and they can interact with each 
other to involve in the maturation of glutamatergic and GABAergic synapses [41]. The 
three long-range interactions were enriched in cell types that have distinct spatial dis-
tribution [42, 43, 44]. Using all 13 cell types, we defined 38 near cell type pairs and 9 far 
cell type pairs according to their relative spatial positions (Additional file 1: Fig. S6f ). The 
nicely organized layer structures lead to the majority of cell types being close to each 
other, such as L4 and L5 IT, L6b, and L6 IT (Additional file 1: Fig. S6g).

For the mouse cortex dataset, ICELLNET, CellChat, CellPhoneDB, and SingleCell-
SignalR have better consistency with spatial information evaluated by the DES score 
(Fig. 6b). This is in general consistent with the results from the TME. However, the 
comparison with commonly inferred CCIs is not so stable (Fig. 6c). CellCall ranked 
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third by F1 score in the mouse cortex dataset, but in PDAC and SCC datasets, it only 
ranked at 15 and 11. In summary, the metric of commonly inferred interactions seems 
to be not as stable as the metric that evaluates the interaction possibility using spatial 
distance tendencies in different biological systems.

We next compared the interaction patterns between different tools, and the results 
showed that the cell types of the mouse cortex were highly connected, as reflected by 
most CCI tools except for CytoTalk, NATMI, Giotto, and stLearn (Additional file 1: 
Fig. S6h). The different patterns of these tools might be due to the low number of 
significant CCIs identified by each tool (Fig. 6d, 3 for NATMI, 5 for stLearn, 17 for 
CytoTalk, 23 for Giotto). Again, although the interaction numbers and patterns are 
similar between most of the tools, the common interactions were few (Fig.  6d, less 
than 20% for most pairwise comparisons between tools), and the statistical-based 
methods have overall better consistency than network-based and ST-based methods 
(Fig. 6d,e).

Fig. 6  Evaluation results in the mouse cortex dataset. a Spatial cell type annotation result of mouse cortex 
dataset’s ST data. Color indicates the spot’s cell type. b The dot plot of tools’ average distance enrichment 
scores (DES), sorted by the DESs. c The dot plots of tools’ average relative accuracy metrics (F1 score, 
precision, recall), all sorted by the F1 score. d The heatmap shows the average common interaction number 
between each tool’s result per cell type in the mouse cortex dataset. Color displays the interaction number. 
The bar plot on the top shows the average interaction number predicted by each tool per cell type. The 
actual number is labeled on the top of each bar. e The dot plot of top 10 most common interactions among 
all tools in the mouse cortex dataset, sorted by interaction’s common count. The dot size indicates the top 
rank percentage of the interaction in corresponding tool’s result. The dot color reflects interaction’s spatial 
distance tendency in the mouse cortex dataset. The CCI tools are grouped by their model types
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Human heart dataset

The developmental system has cell type-specific transcriptional profiles correspond-
ing to distinct anatomical regions in different developmental stages. We applied our 
benchmark workflow on a developmental system dataset from 3 human embryonic 
cardiac samples collected at 6.5 PCW, here using sample 9 for demonstration. We 
identified 11 cell types after spatial cell type annotation, including two types of car-
diomyocytes (atrial cardiomyocytes and ventricular cardiomyocytes), two types of 
endothelial cells (capillary endothelium and endothelium/pericytes/adventitia), epi-
cardial cells, epicardium-derived cells, erythrocytes, fibroblast-like cells, immune 
cells, smooth muscle cells, and a merged cell type population for cardiac neural crest 
cells and Schwann progenitor cells (Fig. 7a, Additional file 1: Fig. S7a-b). The major 

Fig. 7  Evaluation results in the human heart dataset. a Spatial cell type annotation result of ST data of 
sample 9 in the human heart dataset. Color indicates the spot’s cell type. b The box plot of tools’ average 
distance enrichment scores (DES) evaluated using all samples (sample 8, sample 9, sample 10) in the human 
heart dataset, sorted by the median DES. c The box plots of tools’ average relative accuracy metrics (F1 score, 
precision, recall) evaluated using all samples (sample 8, sample 9, sample 10) in the human heart dataset, all 
sorted by the median F1 score. d The heatmap shows the average common interaction number between 
each tool’s result per cell type in the sample 9. Color displays the interaction number. The bar plot on the top 
shows the average interaction number predicted by each tool per cell type. The actual number is labeled 
on the top of each bar. e The dot plot of top 10 most common interactions among all tools in the sample 9, 
sorted by interaction’s common count. The dot size indicates the top rank percentage of the interaction in 
corresponding tool’s result. The dot color reflects interaction’s spatial distance tendency in the sample 9. The 
CCI tools are grouped by their model types
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cell type in the human heart sample 9 was ventricular cardiomyocytes, which were 
specifically localized in the ventricle regions (Fig. 7a).

The ligand-receptor distance distribution in the human heart dataset was more con-
centrated than the tumor or neuron systems (Additional file  1: Fig. S7c, Fig. S4-5c, 
Fig. S6d), which might be caused by the fewer spot number and tighter arrangement 
of cells in the heart. We identified 255 known interactions in the human heart dataset 
with 16 short-range interactions and 16 long-range interactions (Additional file 1: Fig. 
S1c). Consistently, short-range interactions like GDF11–TGFBR1, COL1A2–ITGA9, 
and HSPG2–DAG1 were spatially colocalized in the tissue (Additional file  1: Fig. 
S7d), among which COL1A2 and HSPG2 are known to play important roles in cell 
adhesion [38, 45]. The three long-range interactions shown are all related to secreted 
functions [42, 46, 47] and their ligands and receptors are spatially distributed away 
from each other. As for the cell type pairs, we defined 11 near cell type pairs and 3 far 
cell type pairs (Additional file 1: Fig. S7e-f ), which might be due to the highly mixed 
cell types around the aorta region.

In sample 9 of the human heart dataset, ICELLNET, SingleCellSignalR, CellChat, 
and CellPhoneDB were top-ranked by the DES, which is similar to their performance 
in the TME or nervous system, suggesting the robustness in evaluating significant 
interactions with their spatial distance tendency (Fig. 7b). Furthermore, all the four 
tools represented better overall consistency with the commonly identified interac-
tions, but with unbalanced performances in the precision and recall (Fig. 7c). These 
results suggest that DES and common interaction metrics have similar performance 
in the heart dataset. Interestingly, CellChat, CellPhoneDB, and ICELLNET also have 
a better performance in the TME dataset for overlap with common interactions. Con-
sidering that the heart data also showed a spatial tendency to short-range interac-
tions like the TME, it might indicate that these tools have a preference for identifying 
short-range interactions, and the common interaction metrics might be biased by the 
short interaction distance distributions. In addition, we also observed the generally 
higher F1 score of statistical-based tools in the human heart dataset which was con-
sistently observed in all the previous datasets. These phenomena highly indicating 
that the common interaction metrics might not only be biased by the interaction type 
distributions but also be biased by the tools’ algorithm similarities.

Comparing the interaction patterns between different tools, we did not find a major 
interacting cell type that is similar to the nervous system, indicating that the cells 
in the heart were also highly connected with each other (Additional file 1: Fig. S7g). 
CytoTalk, Giotto, and stLearn showed poor performance with the interactions that 
existed in limited cell types. Unsurprisingly, the common interactions were still few 
in the developmental system dataset (Fig.  7d, less than 25%). The top 10 common 
interactions that we found in the human heart dataset are enriched in the IGF and 
NOTCH pathways between epicardial cells and atrial cardiomyocytes (Fig. 7e), while 
these interactions play important roles in atrial development [48, 49, 50]. Different 
from other datasets, we found 4 long-range interactions in the top 10 common inter-
actions in the human heart dataset (Fig. 7e), which might be caused by the distinct 
distribution of fibroblast-like cells (Fig.  7a). Besides, statistical-based methods still 
have overall consistency than network-based and ST-based methods (Fig. 7e).
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Human intestine dataset

Next, we applied our benchmark workflow to another developmental system dataset 
from human fetal intestine samples collected at 12 and 19 PCW, here using sample A4 
for demonstration. We identified 8 cell types in ST data, including endothelium, epithe-
lium, fibroblasts, immune cells, muscularis, neural cells, pericytes, and a merged clus-
ter of myofibroblast and mesothelium (Fig. 8a, Additional file 1: Fig. S8a-c). Cell types 
in this human intestine sample represented a clear layer structure of epitheliums sur-
rounded by the layers of fibroblasts, muscularis, and neural cells successively [32]. The 
innermost layer (Epithelium) is huge and occupied most of the slides.

Interestingly, although from the tissue architecture, many cell types were spatially 
closed due to the layer structure. The spatial d _ ratio density in the human intes-
tine dataset represented a right-tail distribution, with many interactions toward the 

Fig. 8  Evaluation results in the human intestine dataset. a Spatial cell type annotation result of ST data 
of sample A4 in the human intestine dataset. Color indicates the spot’s cell type. b The box plot of tools’ 
average distance enrichment scores (DES) evaluated using all samples (sample A3, sample A4) in the human 
intestine dataset, sorted by the median DES. c The box plots of tools’ average relative accuracy metrics (F1 
score, precision, recall) evaluated using all samples (sample A3, sample A4) in the human intestine dataset, 
all sorted by the median F1 score. d The heatmap shows the average common interaction number between 
each tool’s result per cell type in the sample A4. Color displays the interaction number. The bar plot on the 
top shows the average interaction number predicted by each tool per cell type. The actual number is labeled 
on the top of each bar. e The dot plot of top 10 most common interactions among all tools in the sample A4, 
sorted by interaction’s common count. The dot size indicates the top rank percentage of the interaction in 
corresponding tool’s result. The dot color reflects interaction’s spatial distance tendency in the sample A4. The 
CCI tools are grouped by their model types
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long-range type (Additional file  1: Fig. S8d). We identified 420 interactions with 23 
short-range interactions and 23 long-ranged interactions (Additional file 1: Fig. S1c). The 
three short-range interaction examples are associated with cell adhesion [51, 52] and 
displayed spatial colocalized patterns, while the three long-range interaction examples 
are enriched in spatially distinct cell types (Additional file 1: Fig. S8e) with the function 
of secreted signaling pathways [43, 53, 54]. Similar to the nervous system, we identified 
more cell type pairs as near cell type pairs (8) and fewer cell type pairs as long ones (2) 
due to the layer structure (Additional file 1: Fig. S8f-g).

In the human intestine dataset, stLearn, CellChat, SingleCellSignalR, and NicheNet 
were top-ranked again evaluated by the DES, but CellPhoneDB showed a relatively poor 
performance (Fig. 8b). For the metric of commonly inferred interactions, CellPhoneDB, 
CellPhoneDB v3, and ICELLNET showed the overall highest result similarities, a result 
similar to the heart system and the TME (Fig. 8c, Fig. 7c, Figs. 4 and 5c).

Comparing the overall interaction patterns between different tools, we found that 
fibroblasts, myofibroblast/mesothelium, and muscularis were the major interacting cell 
types in the intestinal development at the 19 PCW stage (Additional file  1: Fig. S8h, 
sky blue, orange, and yellow), consistent with the findings in the original publication 
[32]. The overlaps between different datasets were still low and inferred results varied 
largely across different tools, while statistical-based tools shared more common inter-
actions than network-based and ST-based tools (Fig.  8d,e). To summarize, in the two 
developmental system datasets, CellChat displayed the best consistency with the spatial 
tendencies of known interactions, while CellChat, ICELLNET, and CellPhoneDB kept 
their balanced performances in both spatial distance tendency and overlap with com-
mon interactions similar to the TME dataset.

Distance enrichment score rank

We computed the average DES among all 5 datasets to evaluate the overall consistency 
with spatial information of each CCI tool. CellChat, ICELLNET, SingleCellSignalR, and 
NicheNet were top-ranked with an averaged DES rank of less than 5 (Fig. 9a), indicating 
that these four tools almost achieved top 5 performance in every dataset. Among these 
well-performed tools, CellChat has the most stable performance than the others, which 
ranked top 4 in all 5 datasets (Fig. 9a). Interestingly, NicheNet has the best consistency 
with spatial information in two tumor datasets, but the accuracy drops in the nervous or 
developmental system. One probable explanation is that the prior literature-based net-
work model used in NicheNet has a bias toward gene regulations and cell-cell interac-
tions in the TME. Although the DES ranks of different tools had slight fluctuations in 
several datasets, the overall DES ranks were still stable across different datasets and sys-
tems, especially for ranks of well-performed tools (Fig. 9a). CytoTalk provided a similar 
way to benchmark CCI tools based on mutual information by integrating scRNA-seq 
and ST data, and we found CytoTalk evaluation method gave out a similar result to our 
DES evaluation method. CellChat, NicheNet, and SingleCellSignalR were consistently 
ranked in the top 5 no matter evaluated using the CytoTalk metric or our DES metric 
(Additional file 1: Fig. S9a-b, comparing on the human intestine dataset). In summary, 
the DES metric representing the consistency with spatial information is a stable metric 
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Fig. 9  Comprehensive evaluation results. a The heatmap shows the rank of each tool’s distance enrichment 
score (DES) in all 5 datasets and the average DES rank. Tools are sorted by the average DES rank. The actual 
rank for each tool in each dataset is labeled on the corresponding location. b The rank heatmaps of 3 
relative accuracy metrics (left: F1 score; medium: precision; right: recall). Tools in each heatmap are ordered 
by corresponding metric. The actual ranks are labeled on the heatmap. c The average rank of tools’ DES 
in simulated and real dataset. Tools are ordered by the average ranks. The actual ranks are labeled on the 
heatmap. d The scatter plot of average running time and maximum memory usage of each tool in all dataset. 
The point shape indicates different tools. The average running time of each tool in each dataset is computed 
by summing up user and system time and then dividing it by the cell type number in the corresponding 
dataset
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to evaluate the possibility of CCIs, and CellChat has overall the best performance in 
coordinating with spatial distance tendencies.

Commonly identified interaction metric ranks

Ranks by the metric of commonly inferred interactions slightly differed from the 
DES ranks, and several tools with good performance evaluated by DES ranks, such as 
NicheNet and stLearn, showed a worse performance evaluated by F1 score (Fig. 9b, F1 
score rank). CellPhoneDB, CellPhoneDB v3, ICELLNET, Connectome have an average 
rank of top 5 in the F1 score (Fig.  9b, F1 score rank). Only CellPhoneDB maintained 
high ranks in both precision and recall metrics within these tools, the other 4 tools all 
displayed imbalanced performance between precision and recall ranks (Fig.  9b). For 
example, CellPhoneDB v3 has the top 2 precision rank, but it shows poor performance 
in terms of recall (Fig.  9b), which may be due to the relatively low number of signifi-
cant interactions identified by CellPhoneDB v3 (around 20). SingleCellSignalR has a high 
recall but low precision (Fig. 9b), which may also impact by a large number of significant 
interactions (60–150). Consistent with what we observed in common interaction pat-
terns in 5 datasets (Figs.  4, 5, 6, 7, and 8d, e), the statistical-based tools, for example, 
CellPhoneDB, CellChat, SingleCellSignalR, and ICELLNET, obtained higher ranks than 
network-based and ST-based tools in both F1 score rank and recall rank, indicating the 
statistical-based methods are more similar with each other (Fig.  9b). The overall bet-
ter performances of statistical-based tools on the F1 score indicates that the evaluating 
results of the commonly identified interaction metrics may be biased. Tools with similar 
algorithms tend to have better performance while evaluating using commonly identified 
interaction metrics, such as CellPhoneDB and CellPhoneDB v3 (Fig.  9b). In this case, 
the commonly identified interaction metrics can only be used to reflect the similarity 
of results from different tools, they cannot be used as measures of the ground truth to 
evaluate the accuracy of predicted CCIs.

Metrics average rank

Finally, we integrated the DES ranks from the real and simulated datasets to assign each 
tool a comprehensive performance rank. CellChat ranked first with an average rank of 
1.7, followed by ICELLNET, SingleCellSignalR, CellPhoneDB, and NicheNet (Fig.  9c). 
CellChat obtained high DES ranks in both real and simulated datasets (2.4 and 1 respec-
tively), indicating its best performances and robustness across datasets and biological 
systems. CellPhoneDB displayed better consistency with spatial information in the sim-
ulated datasets than in the real datasets, possibly due to the statistical-based tools are 
easier to find significant interactions based on the overexpressed L-R signals (Fig. 9c). 
Interestingly, ST-based tools, such as Giotto, CellPhoneDB v3, and stLearn, did not get 
significantly higher ranks than the scRNA-seq-based tools for the DES metric (Fig. 9c). 
It could be probably caused by the difference in integrating spatial information of these 
tools and our DES metric. Finally, the top 5 ranked tools indicated an overall better per-
formance of statistical-based tools than network-based tools, with four statistical-based 
(CellChat, SingleCellSignalR, CellPhoneDB, ICELLNET) and only one network-based 
(NicheNet) (Fig. 9c).
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Running time and maximum memory usage

In addition to the metrics of DES and commonly inferred interactions, we also com-
pared the average running time and maximum memory usage for each tool (see “Meth-
ods”). We found that most tools had similar running times and maximum memory usage 
which clustered at the bottom left (11 out of 16), most of which (4 out of 11) are sta-
tistical-based tools (Fig. 9d). Apart from them, NicheNet, CytoTalk, SingleCellSignalR, 
and stLearn had higher running time and maximum memory usage (Fig. 9d). CytoTalk is 
originally designed for constructing de novo intracellular and intercellular signaling net-
works rather than simply predicting CCIs. For that reason, CytoTalk starts its workflow 
by generating two intracellular signaling networks between two cell types, which is quite 
time-consuming. Thus, CytoTalk may not an efficient tool for predicting CCIs, but it can 
still be a good choice for exploring the intracellular signal transduction network between 
two cell types. NicheNet, another network-based tool, needs to evaluate the activity of 
ligands, targets, and receptors from the expression matrix and prior signaling model, 
respectively, which need much more time than just focusing on ligands and receptors. 
Though stLearn had a high running time because of its permutation step, ST-based tools 
tend to have less running time and maximum memory usage than scRNA-seq-based 
tools since the ST data has a relatively smaller size than scRNA-seq data (Fig. 9d). Most 
statistical-based tools only focused on the expression of ligands and receptors, so the 
main time costs are from the iterations in the statistical test step. In this case, they are 
less time-consuming and have less memory usage than those network-based tools (if the 
permutation times in statistical tests are not too many). In this case, although SingleCell-
SignalR can generate relatively robust results, considering the time and memory usage, 
CellChat and CellPhoneDB are more recommended to estimate CCIs as they will scale 
well when the cell numbers increased, especially for those consortium projects which 
usually generate millions of cells.

Discussion
Cellular crosstalk based on CCIs is the fundamental basis of many biological processes. 
The increased throughput of scRNA-seq technologies enabled computationally inferring 
CCIs based on ligand-receptor information. Although numerous CCI tools have been 
developed, their results are highly dynamic and no ground truth is provided to evalu-
ate the accuracy. Validation of these interactions through loss-of-function experiments 
or high-throughput screening like CIM-seq [55] is labor-intensive and time-consuming. 
There is a great need to find reliable and cost-effective benchmarks for evaluating CCIs.

In this study, we integrated the spatial colocalization information with the gene 
expression for evaluating the possibility of predicted CCIs. We characterized the CCIs 
into long-range and short-range interactions based on ligand-receptor expression dis-
tribution on the ST datasets, and developed a comprehensive workflow to benchmark 
the performance of CCI tools using consistency with spatial interaction distance and 
commonly identified interactions. We applied our workflow on 16 different CCI tools 
using 20 matched ST and scRNA-seq datasets (15 simulated and 5 real datasets). Our 
results suggest that the DES metric we developed is more stable in evaluating the per-
formance of different CCI tools, while the commonly identified interactions are affected 
by many factors. Tools that predicted more interactions are more likely to have higher 
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recall ranks, while tools with less predicted results tend to have higher precision. In 
addition, tools with similar algorithms tend to dominate the common interactions to 
get higher scores in commonly identified interaction metrics, such as CellPhoneDB and 
CellPhoneDB v3. Although we tried to use the F1-score to balance the precision and 
recall, the results are still biased to statistical-based methods, as they tend to have simi-
lar interaction predictions and an in general higher overlap. These results suggest that 
the metric of commonly identified interactions might not be an appropriate strategy for 
evaluating CCI tools, although it has been widely used in previous algorithm develop-
ment papers [11, 19, 23]. Finally, the CCIs predicted by different tools vary greatly from 
each other, with only less than 25% shared pair-wisely for most of the systems we tested. 
On that basis, the shared interactions by different tools may not be a good standard for 
evaluating CCI tools, it can only serve as a way to reflect the similarity of results from 
different tools.

The observed spatial distance tendencies provided useful additional information in 
our evaluation study, indicating that the combination of multimodal data such as ST and 
scRNA-seq will improve the performance of CCI predictions. So far, the main restriction 
on involving ST data in predicting CCIs is that the spatial resolution of currently used 
ST technologies cannot reach the single-cell resolution. This low spatial resolution will 
cause a mixture of gene expression patterns of different cell types in a single spot, which 
heavily influences CCI inference. In this case, scRNA-seq data are still required in these 
ST-based CCI tools for spatial cell type deconvolution. Recently, some ST technologies 
with nanoscale resolution have been published, such as Stereo-seq [56] and Seq-Scope 
[57]. Though the downstream analytic methods for Stereo-seq are still required further 
development, these high-resolution ST technologies will eventually solve the restriction 
problem and construct a more accurate spatial CCI environment. We anticipate that the 
development of CCI tools based on single-cell spatial technology will have higher accu-
racy in identifying real CCIs than the scRNA-seq-based tools.

Our benchmark suggested that CellChat has a better performance than the other 
tools, which might be due to CellChat integrating the regulatory information such as 
the cofactors with ligand-receptor interactions. The regulatory information could better 
simulate the actual interacting environment in biological processes, which will give pre-
dicted interactions more biological meanings. In addition, integrating regulatory infor-
mation might compensate for the potential drop-out from scRNA-seq data and enhance 
the final signals. NicheNet also presented a good consistency with spatial information by 
integrating signal transduction and gene regulatory interactions with basic ligand-recep-
tor interactions in its prior database. Moreover, NicheNet utilizes the known interaction 
resources by integrating individual data resources into a weighted knowledge network, 
highly improving the quality and the confidence level of prior knowledge. The mutual 
corroboration between different databases can find out highly confident resources and 
remove the potential bias from prior knowledge [58]. In summary, the regulatory infor-
mation between different ligand-receptor pairs or within the cells might improve the 
prediction of CCIs and could be considered in the future development of CCI tools.

Interestingly, we found that the ST-based tools that integrate spatial information, such 
as CellPhoneDB v3, Giotto, and stLearn, did not get significantly higher ranks than the 
scRNA-seq-based tools for the DES metric. It could be probably explained by the biases 
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induced by different spatial information integrating methods of these tools. In our evalu-
ation workflow, the spatial distance between each ligand-receptor pair is defined using 
their expression distribution in the whole ST slides. This kind of distance can reflect 
the ligand-receptor co-expression from the global slide view and is independent of the 
potential bias induced by cell type annotation. However, in CellPhoneDB v3, Giotto, 
and stLearn, the spatial distance of each ligand-receptor pair is defined based on the cell 
type colocalization patterns, which might be significantly affected by wrong cell type 
mapping or annotations. In our benchmark workflow, the spatial tendency was evalu-
ated using an enrichment score-based method using relative ranks, which will reduce 
the potential affluence of a few misannotated cells. In addition, those ST-based meth-
ods focus more on the ligand-receptor co-expression in a local region rather than the 
global slide view, which will also cause differences in defining the short and long-range 
interactions. For the scRNA-seq-based tools, they do not utilize spatial information thus 
the potential bias in integrating spatial information is the same for all tools. Therefore, 
although we also benchmarked the performance of ST-based tools, their poor perfor-
mance might arise from the difference in integrating spatial information, and we recom-
mend benchmarking the scRNA-seq-based tools using our workflow for getting more 
reliable results.

It is worth mentioning that the thresholds and parameters used for different tools 
could significantly affect the results, as they may affluence the number of interactions 
predicted by different tools. In our study, we used the default thresholds and parame-
ters suggested by different tools, as it is very hard to harmonize the significance between 
statistical-based methods and network-based methods, also most people tend to use the 
default parameters in predicting CCIs. Besides the parameters, the interaction database 
(known ligand-receptor pairs) is another key factor that can greatly influence the final 
result of a CCI tool, and many tools have very few overlaps between ligands, receptors, 
and interactions. Currently, to consistently compare the results, we used the interac-
tion database from CellChat and only keep the interactions covered by both scRNA-seq 
and ST data. Although this method can control the impact of different databases, it also 
leads to a significant drop in the number of interactions we used. And for those tools 
with complex database structures such as NicheNet, scMLnet, Connectome, and Cell-
Call, it is hard for us to replace their databases with our curated database and we still 
use the database from the original methods, which will also introduce some bias to our 
evaluation results of these tools. Another related evaluation work from Dimitrov et al. 
[58] also highlighted the issue of significant impacts of CCI databases on the predicted 
results. In summary, both the CCI tools and database can significantly impact the pre-
dicted CCIs, thus a high-quality interaction database will definitely improve the predic-
tion results of CCIs.

We also compared our benchmark work with Dimitrov et al. [58] in detail. The evalu-
ation work from Dimitrov et al. mainly focused on comparing the L-R databases used 
by different CCI tools and analyzed the usage of different databases in influencing CCI 
prediction. Their results suggested that the coverage of interactions in different data-
bases is biased toward specific subcellular locations and functional categories which 
will introduce different biases in CCI predicting. These analyses are complementary to 
our benchmarking study, which mainly focused on evaluating the accuracy of different 
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CCI prediction tools based on the integration of ST data. Both Dimitrov et al. and our 
study evaluated the performance of CCI tools by comparing the results with common 
interactions. We have a similar conclusion that the shared interactions between differ-
ent CCI tools were relatively low, even after we run different tools using the same L-R 
database. In our benchmark, we also found that the statistical-based methods and net-
work-based methods show different overlaps with common interactions, with statistical-
based methods tend to show more consistent interactions between different methods. 
Besides, we also used the simulated datasets as well as integrated the spatial informa-
tion from ST datasets to provide a more comprehensive benchmark for the accuracy of 
predicted CCIs. In summary, our study has some overlap with Dimitrov et al., but we 
provided more strategies and comprehensive evaluations on the accuracy of CCI predic-
tions, while Dimitrov et  al. are more focused on benchmarking the usage of different 
CCI databases.

Despite our workflow could benchmark the CCIs efficiently, there are still some 
aspects to improve. The distance measurements of gene distributions and cell type pairs 
can be further optimized. We used Wasserstein distance as the distance measurement 
of gene distributions while average Euclidean distance for cell type pairs in our study. 
All two measurements evaluate distance on a global scale. Though they worked well 
throughout the whole evaluation process, there are cases where a local distance might 
be better. For example, in the human intestine dataset, spots in the center region of the 
epithelial cluster are distal from any other cell types while spots at the boundary of the 
epithelial cluster are adjacent to fibroblasts. For that reason, it is reasonable to identify 
short-range interactions between epithelial and fibroblasts from CCI tools. But due to 
the distance being calculated globally, the pair of epithelial cluster and fibroblasts cluster 
is regarded as medium distributed cell type pairs. In the future evaluation, it is better to 
further split some cell type clusters into mini-clusters according to their local structures 
and evaluate respectively.

Conclusions
We present a comprehensive workflow to evaluate the performance of cell-cell inter-
action methods by integrating scRNA-seq data with spatial information. We found 
that ligand-receptor-based interactions can be separated into short-range interactions 
enriched in cell-cell contact and long-range interactions enriched in secreted signal-
ing. Using consistency with spatial cell type distribution and with commonly identified 
interactions, we benchmarked 16 CCI tools using 15 simulated and 5 real datasets. Our 
results suggested that CellChat has the best performance in consistencies with spatial 
information. Moreover, CellChat and CellPhoneDB will generate high-confidence results 
with scaled computational resources, while SingleCellSignalR showed a good perfor-
mance but consumes much time and memory. The CCI results from different tools are 
highly dynamic, with statistical-based methods showing more agreement with each 
other. We recommended combining results from multiple tools to ensure the accuracy 
of identified interactions.

Taken together, our work provides a concept to integrate spatial information for 
evaluating the likelihood of the CCIs. Our benchmark could guide the development 
of future computational tools in resolving the CCIs using multimodal datasets such 
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as ST and scRNA-seq. Finally, to support the future benchmarking of CCI inference 
performance, we have packaged the benchmark workflow with detailed documen-
tation and included all the benchmark results in simulated and real data in Github 
(https://​github.​com/​wangl​abton​gji/​CCI).

Methods
Datasets

We collected 5 ST datasets with matched scRNA-seq data to explore the spatial distance 
tendencies and evaluate CCI tools. These datasets are from 3 different biological sys-
tems, the human pancreatic ductal adenocarcinoma dataset [28] and the human squa-
mous cell carcinoma dataset [29] are from the tumor microenvironment system; the 
mouse cortex dataset [30] is from the nervous system; and the human heart dataset [31] 
and the human intestine dataset [32] are from the developmental system. The scRNA-
seq and ST data preprocessing were done by Seurat V3 [59], and the cell type deconvolu-
tion of ST data was done by STRIDE [60].

Human pancreatic ductal adenocarcinoma (PDAC) dataset

The original publication processed primary PDAC tumor samples from two untreated 
patients for parallel scRNA-seq and ST analysis [28]. We included two samples 
(PDAC_A: GSM3036911, PDAC_B: GSM4100724) in our study. The corresponding 
scRNA-seq and ST data were accessed through Gene Expression Omnibus (GEO) under 
accession number GSE111672. We annotated the cell types of scRNA-seq data by com-
bining the cell type label and marker genes provided in its data source and publication 
(Fig. 4a, Additional file 1: Fig. S4a-b, using sample PDAC_A as an example).

Human squamous cell carcinoma (SCC) dataset

The SCC dataset was generated from a published study on human cutaneous squa-
mous cell carcinoma [29]. The ST and matched scRNA-seq data of patient 2 replicate 2 
(P2_rep2: GSM4284317), patient 5 replicate 3 (P5_rep3: GSM4284321), and patient 10 
replicate 1 (P10_rep1: GSM4284325) were obtained from its original dataset through 
GEO under accession number GSE144240 and included in our study as the SCC data-
set. We used the level 2 cell type annotation provided in its metadata file and the cell 
type markers in its publication to annotate the cell types of scRNA-seq data. Consistent 
with its original publication, we removed the multiples, pilosebaceous, eccrine cells from 
scRNA-seq data. To guarantee adequate cells for each cell type population, we merged 
CLEC9A DCs, CD1C DCs, plasmacytoid DCs, AS DCs, and Langerhans cells into DCs 
cluster and merged macrophages and MDSCs into Mono/Macro cluster (Additional 
file 1: Fig. S5a-b, using sample P2_rep2 as an example).

Mouse cortex dataset

The scRNA-seq data of the mouse cortex dataset was obtained from a reference dataset 
of adult mouse cortical cell taxonomy from the Allen Brain Atlas [61], generated with 

https://github.com/wanglabtongji/CCI
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the SMART-Seq2 protocol. The cell type annotations of scRNA-seq data were directly 
obtained from its data source (Additional file 1: Fig. S6a). We selected the Adult Mouse 
Brain (FFPE) dataset from the public dataset resources of 10x Genomics [30] as the ST 
data of the mouse cortex dataset. After preprocessing and clustering, we extracted the 
cortex region from the ST data using the corresponding H&E staining image as the seg-
mentation reference (Additional file 1: Fig. S6b-c). We furtherly removed 2 spots in clus-
ter 15 that obviously did not belong to the cortex region (barcode: AGA​CCC​ACC​GCT​
GATC-1, GAA​TAG​CAT​TTA​GGGT-1, masked by cross signs in Additional file  1: Fig. 
S6b). Finally, for both scRNA-seq and ST data, we transformed the mouse gene symbols 
to human gene symbols using biomaRt [62].

Human heart dataset

The human heart dataset was generated from a published study [31] on revealing the 
transcriptional landscape of cell types populating during human embryonic heart devel-
opment. Filtered ST and scRNA-seq data with cell type annotations were downloaded 
from the Mendeley Data [63]. The ST data from sample 8 to sample 10 was extracted 
from the original dataset and included in our human heart dataset, which corresponds 
to 3 6.5 PCW human embryonic heart samples (Additional file 1: Fig. S7a-b, using sam-
ple 9 as an example).

Human intestine dataset

The human intestine dataset was obtained from a published study [32] about the spa-
tiotemporal analysis of human intestinal development. ST and scRNA-seq data were 
accessed through GEO under accession numbers GSE158328 (ST) and GSE158702 
(scRNA-seq). Two samples (A3: GSM4797918, A4: GSM4797919) were included in our 
human intestine dataset, corresponding to the sample from 12 PCW and 19 PCW colon 
tissues respectively. The preprocessing and cell type annotation of scRNA-seq data was 
performed by MAESTRO [64] using the gene markers provided in its publication and 
the ST data was subset according to the biggest tissue region in the slide (Additional 
file 1: Fig. S8a-c, using sample A4 as an example).

Defining short‑ and long‑range interactions

Spatial gene expression distribution distance

Using the physical locations of each spot as the coordinates, the gene expression lev-
els as the values, we constructed spatial gene expression distributions from the ST data. 
The distance between two genes’ spatial expression distributions can be measured by the 
Wasserstein distance since both distributions are discrete.

Wasserstein distance is a common-used distance measurement of two distributions, 
which solves an optimal transport problem to evaluate the distance. In our case, suppose 
ligand gene expressed in m spots and receptor gene expressed in n spots of ST data, we 
generate a matrix D ∈ ℝm × n to record the Euclidean distance between spots with ligand 
or receptor gene expressed according to their spatial coordinates. Then the ligand and 
receptor gene expression distributions can be flattened into one-dimensional vectors: 
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L ∈ ℝm × 1 and R ∈ ℝn × 1 while still keeping their spatial distances in matrix D. The Was-
serstein distance from ligand to receptor can be solved by finding an optimal transport 
plan γ′ ∈ ℝm × n which minimizes the total transport cost. The total transport cost can 
be defined as the summation of the products of transport value and Euclidean distance 
between each spot. The optimal transport plan γ′ can be calculated by the following 
formula:

Furthermore, based on the optimal transport plan γ′, the Wasserstein distance can be 
computed as follows:

In summary, the Wasserstein distance is just the minimum total transport cost 
between two distributions. Since it is time-consuming to compute the Wasserstein 
distance in two-dimensional space, we applied the Sinkhorn algorithm to acceler-
ate the computing process. The Sinkhorn algorithm is a regularized version of Was-
serstein distance and it computes much faster by estimating the optimal solution 
through iteration. We implemented it through the sinkhorn2 function in POT v0.7.0 
[65] with a reg parameter set to 0.001. Due to the addition of entropic regulariza-
tion terms and iterations, the results of the Sinkhorn algorithm on different orders of 
distributions will be slightly different. In this case, the final distance between ligand 
and receptor distributions was defined as the mean of the Wasserstein distances from 
both directions:

where W(L, R) represents the Wasserstein distances from the ligand gene distribution to 
the receptor gene distribution and the W(R, L) represents the Wasserstein distances with 
the direction of receptor gene distribution to ligand gene distribution. The WLR repre-
sents the final Wasserstein distance between ligand and receptor. When applying to the 
real data, we used sctransform [66] to normalize the count matrix before calculating the 
Wasserstein metric.

Ligand‑receptor spatial distance ratio and P‑value

Since we applied the Wasserstein distance to quantify the distance between two gene 
expression distributions, we further defined another variable to reflect the spatial inter-
action tendency.

For a particular ligand-receptor interaction, the ligand gene expression distribution is 
denoted as L while the receptor gene expression distribution is denoted as R. The real 
Wasserstein distance of this interaction (WLR) is denoted as d _ real for convenience. The 
random gene expression distributions of ligand and receptor, denoted as Lr and Rr, can 
be constructed by permuting the coordinates for each spot in L and R. The Wasserstein 
distance between these two random distributions ( WLrRr ) can be calculated in the same 

(1)γ ’ = argmin
γ∈Γ (L,R)

< γ ,D >

(2)W (L,R) = min
γ∈Γ (L,R)

< γ ,D >=< γ ′,D >

(3)WLR = (W (L,R)+W (R, L))/2
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way, denoted as d _ simulation for convenience. Repeating this permuting process for 
adequate times (1000 times in our case), a set of d _ simulation can be generated. In this 
way, the ratio of the d _ real to the mean of the d _ simulation set, denoted as d _ ratio, 
can be used to quantify the spatial tendency of this interaction:

where n is the permuting times. Furthermore, a null distribution of the d _ real can be 
constructed through the d _ simulation set. Then a P-value can be obtained by a one-
sided permutation test based on it, indicating the significance of the spatial interaction 
tendency. In our case, both left-sided and right-sided P-values are calculated to select 
the short- and long-range interactions, respectively.

Filter short‑range and long‑range interactions

We ranked interactions by their spatial distance tendencies (d _ ratio) and significances 
(P-value) to filter short-range or long-range interactions. We first extracted and rear-
ranged ligand-receptor interactions in CellChatDB [11] as the known interactions. 
CellChatDB assigned each interaction an interaction type annotation, such as cell-cell 
contact type and secreted signaling type, which is convenient for the functional valida-
tion. It needs to be emphasized that the interaction type annotations from CellChatDB 
do not influence the definition of the following short/long-range interactions, they are 
only used as an additional reference to validate the accuracy of our definitions. More-
over, CellChatDB contains multi-subunit complexes which can fit the requirement of 
multi-subunit-included CCI tools, such as CellChat, CellPhoneDB, and ICELLNET. 
Adapting to those CCI tools which do not consider multi-subunit complexes, we split 
multi-subunit complexes and rearranged them into single-subunit interactions. The 
original multi-subunit interactions were kept as well. The union of CellChatDB and 
those new rearranged single-subunit interactions was then used as the known interac-
tion list in our following steps.

For each ST dataset, we filtered those interactions which both ligand and recep-
tor genes expressed in at least 10% of the total spots from our known interaction list. 
Since the gene capture rates vary across ST datasets, each dataset has its own filtered 
interaction pairs. We then calculated d _ ratio and P-value of each filtered interaction 
and ranked them. For filtering interactions of high spatial tendency, we used flexible 
thresholds (top 10%) of d _ ratio and P-value since the density distributions of d _ ratio in 
different datasets have different means and variations (Additional file 1: Fig. S4-5c, Fig. 
S6d, Fig. S7c, Fig. S8d). We ranked interactions by their d _ ratio and left-sided P-value 
in both ascending order and selected the top 10% of ranked interactions as the potential 
short-range interactions. Then we ranked interactions by their d _ ratio and right-sided 
P-value in descending order and ascending order, respectively, and selected the top 10% 
of them as the potential long-range interactions. The remaining interactions were clas-
sified as medium-range interactions with no apparent spatial tendency. We next filtered 
those potential interactions with P-value less than 0.01 as the significant short-range and 
long-range interactions.

(4)d_ratio = d_real
n
i=1

d_simulationi/ n



Page 29 of 38Liu et al. Genome Biology          (2022) 23:218 	

Functional validation of short‑range and long‑range interactions

We performed GO enrichment analysis for the functional validation of short-range 
and long-range interactions. The ligand genes of short-range and long-range interac-
tions were extracted and used as the input gene list of GO analysis respectively. The GO 
analysis was implemented using topGO v2.40.0 [67], and annotated using org. Hs.eg.db 
v3.11.4 [68], finally visualized by clusterProfiler v3.16.1 [69].

Spatial cell type annotation

We used STRIDE [60] to perform the spatial cell type deconvolution for each ST data-
set with their matched annotated scRNA-seq data. STRIDE is a topic modeling-based 
method for accurately decomposing and integrating ST slides. In our previous bench-
mark work, STRIDE exhibited the overall best performance among other published cell 
type deconvolution tools, which ensured the accuracy and robustness of the spatial cell 
type annotation in our study. Based on the cell type proportions inferred by STRIDE, we 
annotated each spot by the cell type with the biggest proportion in it.

Defining near and far cell type pairs

Spatial distance between two cell types

After spatial cell type annotation, we constructed spatial distributions of each cell 
type. Spatial cell type distributions only represent the spatial locations of spots of 
specific cell type. To simplify, we used the average Euclidean distance as the distance 
function. The formulas are as follows:

where cta and ctb stand for the cell type a and cell type b; na, nb are the spot number 
of corresponding cell type; spotai is the ith spot in cell type a; function dis() computes 
the Euclidean distance between two spots. Then, the spatial distance between cell types 
can be quantified through the mean of the minimum Euclidean distances between spots 
(Additional file 1: Fig. S2a).

Near and far cell type pairs

We named the combination of two specific cell types as the cell type pair and classi-
fied cell type pairs in each ST sample into three types: near, medium, and far based on 
their spatial distances. Since spatial distances had different ranges in different sam-
ples, it is hard to decide fixed boundaries for clustering spatial distances between cell 
types. So, we just applied the k-means clustering (k=3) to partition these cell type 
pairs into 3 clusters and annotated them as near, medium, and far in the order of their 
average distances.

dis(spota, spotb ) =

√

(

xspota − xspotb
)2

+
(
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)2
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Distance enrichment score

Inspired by the enrichment score (ES) used in gene set enrichment analysis 
(GSEA) [36], we defined the distance enrichment score (DES) to quantify the con-
sistency between excepted and observed spatial distance tendencies. The higher 
DES indicates the better consistency between expected and observed spatial ten-
dency. We first ranked the short-range and long-range interactions by their d _ rat 
and P-value to form the expected ranked interaction lists Ls = {lr1,   lr2, …, lrns} and 
Ll = {lr1,   lr2, …, lrnl}, where the lri is the ith ligand-receptor interaction, the ns, nl is 
the total number of short-range and long-range interactions. In the DES calculation 
part, to get enough common interactions for benchmark in the PDAC dataset, we 
increased the cutoff in defining short/long-range interactions to the top 15% to fit for 
its low gene capture rate.

Then we extracted interactions from the CCI tool’s result and formed the observed 
interaction list S for each cell type pair. We denoted the observed interaction list in near 
cell type pair ctn and far cell type pair ctf as Sn and Sf. For ctn, the DES can be computed 
by adding a weighted P-value proportion (Pmatch) when an interaction exists in the Sn and 
deducting an unmatched weight (Punmatch) when an interaction is absent in the Sn while 
walking down the Ls. Similarly, for ctf, the DES can also be computed using Sf and Ll. The 
Pmatch and Punmatch for the jth interaction in Ls are defined as follows:

where nm is the total number of matched interactions between Sn and Ls. The DES is the 
maximum deviation of (Pmatch − Punmatch) from 0. For DES in ctf, the Pmatch and Punmatch 
are of the same formation.

The metric of commonly identified interactions

Besides DES, we also evaluated the similarity of results from those CCI tools by their 
commonly identified interactions. We extracted shared interactions that existed at 
least 3 times among 10 CCI tools’ results as the alternative positive set. The metrics 
of commonly identified interactions used in our study were precision, recall, and F1 
score:

Pmatch

(

Sn, j
)

=
∑

lrj ∈ Sn
j ≤ i

1− P_valuej
∑

lrj∈Sn

(

1− P_valuej
)

(6)
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Sn, j
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=
∑
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1
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Precision =
TP

TP+ FP

(7)Recall = TP
TP+FN
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where TP stands for the true positives, the number of overlapping interactions between 
commonly identified interactions and predicted interactions. FP stands for the false pos-
itive, the number of interactions that are absent in shared interactions but exist in pre-
dicted results. FN stands for the false negatives, the number of interactions that exist in 
shared interactions but are absent in predicted results.

Simulating paired scRNA‑seq and ST data with the known L‑R pairs

We simulated 15 paired scRNA-seq and ST data with the known overexpressed L-R 
pairs to evaluate CCI tools’ performances. For each biological system, 5 datasets were 
simulated based on a sample selected from that system. In the TME system, sample 
PDAC_A of the human PDAC dataset was selected; in the nervous system, the only sam-
ple of mouse cortex was selected; in the developmental system, sample A4 of the human 
intestine dataset was selected. The simulation workflow is as follows (Fig. 3a):

Step 1: Simulation of scRNA‑seq and ST data

In each simulation round, 4 cell types in ST data are selected and are assigned with the 
near/far cell type pair defined in the original ST data (Additional file 1: Fig. S3a, using 
sample A4 as an example). For each cell type, we randomly selected cells from the same 
cell type in the original scRNA-seq data, and the number of selected cells is based on 
the number of spots to ensure each spot has approximately 2~5 cells after mapping 
scRNA-seq cells to ST. Next, the randomly selected cells will be randomly mapped to 
each spot according to their cell types and replace the spot’s original expression. To keep 
the real spatial cell type structure in ST data, we did not change the original coordinates 
of selected spots.

Step 2: Simulation of interacted L‑R pairs by semi‑synthetic strategy

Then for each near/far cell type pair, 30 interactions are randomly selected, and a semi-
synthetic method [37] is applied to scRNA-seq data to replace original expression sig-
nals of selected ligand and receptor genes with overexpression signals.

Step 3: Filtering simulated interactions to keep short/long‑range interaction consistent 

with the spatial distance of cell type pairs

Having simulated ST data, short/long-range interactions can be defined following the 
same procedure used in the real data. Finally, both simulated scRNA-seq and ST data 
will be re-modified, only overexpression signals of short-range interactions will be kept 
in the near cell type pairs, and the same for long-range interactions in the far cell type 
pairs. After filtering, around 10 simulated interactions will be kept in each cell type pair 
(Additional file 1: Fig. S3b, using sample A4 as an example). For the kept simulated inter-
actions, if available, corresponding transcription factors and target genes will also be 
selected and overexpressed so that the tools based on the transcription factors and tar-
gets could be also used.

F1 score =
2× Precision × Recall

Precision + Recall
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Make consistent of CCI tools’ databases

To ensure the comparability of each tool’s result, we made consistent of CCI tools’ 
ligand-receptor databases since the unique interactions in different databases will intro-
duce the bias (Additional file 1: Fig. S2b). CellChatDB, the database of CellChat, con-
tains both regulatory information and multi-subunit complexes which fits most of tools’ 
requirements, so we chose it to make consistent of other CCI tools’ databases. For some 
tools (CellCall, Connectome, NicheNet, scMLnet) with a more complex database, we 
kept their original databases, and only selected interactions common in CellChatDB 
from their results for evaluation, since collecting and integrating additional information 
besides L-R pairs is quite time-consuming. For the rest of the tools, we simply replaced 
their original databases by the CellChatDB to guarantee the comparability between 
results.

CCI tools included in this study

We evaluated 16 CCI tools in our benchmark study, including 6 statistical-based tools 
(CellCall, CellChat, CellPhoneDB, ICELLNET, iTALK, SingleCellSignalR), 6 network-
based tools (Connectome, Domino, CytoTalk, NATMI, NicheNet, scMLnet), 3 ST-
based tools (CellPhoneDB v3, Giotto, stLearn), and a baseline method. For the choice 
of parameters for each tool, we will use the default or recommended values normally. If 
no default or recommended values are supplied, we will try to adjust several parameters 
to make these tools have similar numbers of predicted interaction numbers with other 
tools.

CellCall

CellCall is a statistical-based tool which also embedded pathway activity analysis in 
selecting significant interactions. The version of CellCall in our study is 0.0.0.9000, 
running with its original database and filtering interactions using 0.05 as its P-value 
threshold.

CellChat

CellChat is a statistical-based tool using permutation test to select significant interac-
tions between two cell types. The version of CellChat in our study is 1.0.0 and applied to 
each dataset with significant P-value threshold set to 0.05.

CellPhoneDB

CellPhoneDB is a statistical-based tool using permutation to calculate the P-value (spec-
ificity) of a given interaction between two cell types. We used the CellPhoneDB v2 in our 
study with CellChatDB ligand-receptor database and set significant P-value threshold to 
0.05.

CellPhoneDB v3

CellPhoneDB v3 is a ST-based tool and is the updated version of CellPhoneDB, it will 
only consider interactions between cell types in the same spatial microenvironment. We 
defined the spatial microenvironments using cell2location [70] according to its tutorial 
and selected the significant interactions using 0.05 as the significant P-value threshold.
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Connectome

Connectome is a network-based tool. It treats cell parcellations as nodes and L-R inter-
actions as edges to form a complete interaction network. Connectome uses a system-
wide Wilcoxon rank sum test to assign each edge a P-value to filter significant edges 
(interactions). We used Connectome v1.0.1 in our study and filtered interactions with 
positive score.

CytoTalk

CytoTalk is a network-based tool. CytoTalk constructs two intracellular signaling net-
works based on mutual information between genes and integrated them by known 
ligand-receptor interactions. Then, CytoTalk uses the score prize-collecting Steiner For-
est algorithm (PCSFs) to extract an optimal subnetwork from the integrated network. 
The remaining ligand-receptor interactions in the subnetwork are significant interac-
tions. The version of CytoTalk included in our study is v4.0.11 and with default param-
eters (GeneFilterCutoff=0.2).

Domino

Domino is a network-based tool finding significant interactions based on the global sign-
aling network. The version of Domino included in our study is 0.1.1. We set the thresh-
old of TF P-value to 0.001 and the threshold of receptor-TF correlation coefficient to 
0.25 according to their default values.

Giotto

Giotto is a ST-based tool using spatial L-R co-expression for predicting. The version of 
Giotto included in our study is 1.0.4. We used 0.01 as the threshold of P-value and 0.1 as 
the threshold of log fold change.

ICELLNET

ICELLNET is a statistical-based tool, using Wilcoxon statistical test to find interactions 
of high global interaction potential between cell types. The version of ICELLNET in 
our study is 0.99.3. To make ICELLNET have similar numbers of predicted interaction 
with other tools, we finally selected top 200 most different interactions with communi-
cation score larger than 20 in the step of filtering significant interaction, based on the 
recommendations.

iTALK

iTALK is a statistical-based tool. iTALK first finds differentially expressed ligand and 
receptor genes between different cell types and searches the ligand-receptor interac-
tion database for both ligand and receptor differentially expressed interactions as out-
puts. iTALK v0.1.0 was included in our study. To make iTALK have similar numbers of 
predicted interaction numbers with other tools, we ran the iTALK with the top highly 
expressed gene number set to 50.
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NATMI

NATMI is a network-based tool. It treats all the ligand-receptor interactions and cell 
types together as a weighted-directed-multi-edge network where nodes represent cell 
types and edges represent ligand-receptor interactions. NATMI selects the top-ranked 
interactions as the confident interactions based on the edge weights. We ran NATMI 
with default parameters and using 0.1 as the weight cutoff in our study.

NicheNet

NicheNet is a network-based tool. It integrates individual data sources covered ligand, 
receptor, signal transduction, and gene regulatory interactions into weighted networks 
as a prior model. Then NicheNet optimizes the weight of each data source in the prior 
model using the model-based parameter optimization. Based on the prior model and 
gene expression, NicheNet assigns each ligand-target pair a regulatory potential score 
using the network propagation method and selects highly potential ligand-receptor-
target pairs. The version of NicheNet in our study is v1.0.0. We ran NicheNet with its 
curated ligand-receptor interactions database and used the top 50 activity ligands for 
selecting highly potential interactions according to its recommended value and the 
numbers of predicted interaction numbers of other tools.

scMLnet

scMLnet is a network-based tool. scMLnet filters interactions by finding overlapping 
receptors and TFs in the 3 signaling subnetworks (L-R subnetwork, R-TF subnetwork, 
TF-target subnetwork) defined by prior knowledge and gene expression. The version of 
scMLnet in our study is 0.1.0. To make scMLnet have the number of predicted interac-
tions larger than 0 in most cases, we set the cutoffs of P-value and log fold change both 
to 0.1.

SingleCellSignalR

SingleCellSignalR is a statistical-based tool. It assigns each interaction a score based on 
global gene expression and estimates an appropriate threshold for these scores by con-
trolling false positive to filter significant interactions. The version of SingleCellSignalR 
in our study is 1.4.0. We set the score cutoff to 0.6 according to its recommended value.

stLearn

stLearn is a ST-based tool predicting interactions based on L-R co-expression and cell 
type density. The version of stLearn included in our study is 0.4.7. We set the permuta-
tion times to 1000 as recommended and filtered interactions with scores larger than 0.

LR product

LR product serves as a baseline method, it selected 10 L-R pairs between each cell type 
in each interacting direction based on the product of L-R expression.
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Running time and maximum memory usage

We recorded the running time and maximum memory usage of each CCI tool in every 
dataset. We ran these tools on a server with an AMD EPYC 7552 48-Core Processor 
with 48 cores and 566 GB RAM with the CentOS 7.9 operating system. For tools that 
supported multiprocessing, we ran them using 4 cores in each dataset, and for tools that 
did not have multiprocessing function, we just ran them using 1 core. In that case, we 
recorded both user time and system time of each tool instead of the real time to ignore 
the differences between single processing and multiprocessing. The user time and sys-
tem time were recorded by using the “time” command on the Linux shell. Then we 
summed user and system time and averaged them by the cell type number in each data-
set. Eventually, we used the average of running time per cell type among all 5 datasets as 
the final running time measurement. The maximum memory usages were also recorded 
by the “time” command as the maximum resident set size in its outputs. We used the 
mean of the maximum memories in all 5 datasets as the final average maximum memory 
for each tool.
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