
Nucleic Acids Research, 2022 1
https://doi.org/10.1093/nar/gkac959

TISCH2: expanded datasets and new tools for
single-cell transcriptome analyses of the tumor
microenvironment
Ya Han1,2,†, Yuting Wang1,2,†, Xin Dong 1,2,†, Dongqing Sun1,2, Zhaoyang Liu1,2, Jiali Yue1,2,
Haiyun Wang 2, Taiwen Li 3,* and Chenfei Wang 1,2,*

1Shanghai Putuo District People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai
200092, China, 2Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University,
Shanghai 200092, China and 3State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral
Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China

Received September 11, 2022; Revised October 04, 2022; Editorial Decision October 08, 2022; Accepted October 11, 2022

ABSTRACT

The Tumor Immune Single Cell Hub 2 (TISCH2) is
a resource of single-cell RNA-seq (scRNA-seq) data
from human and mouse tumors, which enables com-
prehensive characterization of gene expression in
the tumor microenvironment (TME) across multiple
cancer types. As an increasing number of datasets
are generated in the public domain, in this update,
TISCH2 has included 190 tumor scRNA-seq datasets
covering 6 million cells in 50 cancer types, with
110 newly collected datasets and almost tripling
the number of cells compared with the previous re-
lease. Furthermore, TISCH2 includes several new
functions that allow users to better utilize the large-
scale scRNA-seq datasets. First, in the Dataset mod-
ule, TISCH2 provides the cell–cell communication re-
sults in each dataset, facilitating the analyses of in-
teracted cell types and the discovery of significant
ligand–receptor pairs between cell types. TISCH2
also includes the transcription factor analyses for
each dataset and visualization of the top enriched
transcription factors of each cell type. Second, in
the Gene module, TISCH2 adds functions for iden-
tifying correlated genes and providing survival in-
formation for the input genes. In summary, TISCH2
is a user-friendly, up-to-date and well-maintained
data resource for gene expression analyses in the
TME. TISCH2 is freely available at http://tisch.comp-
genomics.org/.

INTRODUCTION

Tumor forms through a series of critical transitions, includ-
ing from normal to pre-cancerous lesions and from pre-
malignant to malignant states. The multistates were associ-
ated with dynamic cellular components and cell communi-
cation in the tumor microenvironment (TME) (1–3). Can-
cer immunotherapy has brought a paradigm shift to can-
cer treatment in recent years (4). Due to the striking genetic
and cellular heterogeneity within the TME, only a fraction
of patients could benefit from immunotherapy (5,6). Ad-
ditionally, some patients showing good initial responses to
treatment ultimately develop drug resistance during the im-
munotherapy (7). Therefore, investigating the change of cell
type compositions under different conditions and cell–cell
interaction in the TME could potentially overcome drug re-
sistance and discover novel clinical implications.

Single-cell RNA-seq (scRNA-seq) has been a powerful
technology to investigate the heterogeneity of the cell type
compositions in the TME (8). It has been widely used to dis-
cover the novel cell types that are involved in tumor progres-
sion and identify cells that contributed to drug resistance
(9,10). However, the rapidly accumulated tumor scRNA-
seq data have also posed a critical barrier to widespread
data re-use and exploration. Although there are several ex-
isting scRNA-seq databases that try to collect and display
the tumor scRNA-seq datasets, including CancerSCEM
(11), DISCO (12) and CancerSEA (13), most of them are
limited in the number of datasets included and the cov-
erage of covered cancer types, and have few downstream
analysis functions. Previously, we developed TISCH (14),
an scRNA-seq database focused on the scRNA-seq datasets
from the TME. TISCH uniformly processed scRNA-seq
data with a standardized workflow that removes batches be-
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tween samples, uniformly annotates the cell types and iden-
tifies the malignant cells. The online visualization and anal-
ysis function of TISCH allows the biomedical research com-
munity to explore gene expression in the TME at single-cell
resolution.

Here, we present an updated version of TISCH, which in-
cludes >6 million cells from 190 tumor scRNA-seq datasets
across 50 cancer types, almost triple the number of cells and
datasets of the previous version. To increase the utility of
this resource, we have also provided several new functions
that allow users to explore the driver transcriptional regu-
lators of each cell type, find the communications between
different cell types, query a gene’s survival and identify its
co-expressed genes across different datasets.

MATERIALS AND METHODS

Data collection and pre-processing in TISCH2

We applied a text mining-based data parsing workflow
to collect datasets in the TISCH2 database. The work-
flow searches the scRNA-seq data based on single-cell and
tumor-related keywords in the Gene Expression Omnibus
(GEO) and ArrayExpress. After the web parser, we man-
ually curated the datasets and then collected sample infor-
mation from databases or the original studies, including pa-
tient ID, platform, source, tissue, cell number, species, can-
cer type, publication, etc. We applied the MAESTRO work-
flow to process all the collected datasets, including quality
control, batch effect removal, cell clustering, differential ex-
pression analysis, cell type annotation, malignant cell classi-
fication and gene set enrichment analysis (GESA) (15–23).
After quality control, the TISCH2 database contains 190
datasets from 50 cancer types and 20 tissue types in total
(Supplementary Table S1).

Cell–cell interaction analysis

To evaluate the cell–cell interactions between different cell
type clusters, we performed CellChat analyses based on the
expression of known ligand–receptor (L–R) pairs in dif-
ferent clusters (24). For each dataset, we followed the of-
ficial workflow and ran CellChat with standard parame-
ters set to infer the cellular communication network. The
number of significant L–R interaction pairs and the com-
munication probability between two clusters were calcu-
lated and displayed by pheatmap R packages and the
‘netVisual circle’ function in CellChat R packages. In addi-
tion, we also provide the significant L–R interaction pairs
for each cluster as the source or target cells, with the P-
value threshold set as 0.05. All these analyses were shown
on the CCI (cell–cell interaction) page under the Dataset
module.

TF enrichment analysis

Identifying the transcriptiion factors (TFs) is crucial to un-
derstanding the underlying gene regulatory network in dif-
ferent cell types. LISA builds an epigenetic model based on
histone mark ChIP-seq and chromatin accessibility profiles
to find factors that are most likely to regulate the input genes
(25). Here, we performed LISA analyses for each cell type

cluster, with the number of the background gene set as 3000,
and the number of differentially expressed genes (DEGs) for
each cluster set as 500; all of the DE genes were used in the
LISA analyses if the total number of DEGs is less than 500.

For each dataset, the TF enrichment result of each clus-
ter was ranked based on the combined P-value after the
normalization and log10 transformations, and the top en-
riched TFs from different cell type clusters were visualized
by heatmap (26). Due to the heterogeneity within malignant
cells and the difference between the malignant cell and other
cells, we process and visualize malignant cells with other
cells separately. Additionally, for each cluster, we provided
dot plot visualization to display the top 10 TFs with their
expression levels, and the top 50 ranked TFs were shown in
the table of each dataset.

Survival analysis

To facilitate users evaluating the clinical effect of the spe-
cific gene, we added the survival analysis in the Gene mod-
ule. The expression and clinical data of TCGA were down-
loaded from the GDC TCGA data portal (27,28). For each
gene, we calculated the hazard ratio (HR) (3) and generated
significant P-values in 33 cancer types separately.

Gene-gene correlation

Co-expressed genes are potentially associated with the same
functions and biological processes. Due to the large num-
ber of cells in TISCH2, the correlation computation will
be time and memory consuming, and could be affected by
the high drop-out rate in scRNA-seq data. Thus, we par-
titioned single cells into small groups (called mini-clusters
hereafter) based on their similarity in the KNN graph; each
of the mini-clusters contained 30 similar cells and the ex-
pression levels were averaged. This strategy is similar to
MetaCell, and Zheng et al. characterized mini-cluster meth-
ods (29,30). The correlation was calculated with the R pack-
age Hmisc using the rcorr function at the mini-cluster-level
expression matrix (https://CRAN.R-project.org/package=
Hmisc). Considering the diversity of gene expression pat-
terns in different cell types, besides the global correlation,
we also calculated the gene–gene correlation within specific
cell lineages for each dataset. To decrease the noise of genes
that are always expressed at a low level but keep genes which
are highly expressed in rare cell types, for each dataset,
we only calculated the correlation between genes that have
an averaged logTPM (transcripts per million) ≥0.5 or max
logTPM ≥2. Gene pairs with correlation test P-value >0.05
or absolute correlation coefficient <0.2 were regard as not
significantly correlated genes and were also removed from
the correlation results. If users search for one gene that was
filtered in the selected datasets in the gene correlation tab,
TISCH2 will return ‘No significant correlated genes’. Fi-
nally, a correlation table as well as a heatmap for the top
correlated genes will be displayed for the input gene in the
Gene module. To reduce the size of the correlation heatmap,
only the top 50 correlated genes that appear in more than
half of the selected datasets will be displayed, and only the
top 500 correlated genes for each cell type lineage will be
displayed in the table.

https://CRAN.R-project.org/package=Hmisc
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Figure 1. Comparison of the data in TISCH1 and TISCH2. (A and B) The dataset number comparison between the TISCH1 (blue) and TISCH2 (red) at
the tissue level (A) and the treatment strategy level (B).

RESULTS

Data summary

The TISCH2 database contains ∼6 297 320 cells from 190
datasets from 50 cancer types in 20 different tissues, com-
pared with the previous version of TISCH which includes
∼2 045 746 cells from 79 datasets (Figure 1A; Supplemen-
tary Figure S1); the total number of cells and datasets is al-
most three times as many as the size of the previous version.
As for the tumor scRNA-seq datasets with treatment, 40
datasets under different treatment conditions were provided
in the current TISCH2 (35 human datasets and 5 mouse
datasets), which contains immunotherapy, chemotherapy,
targeted therapy and combined therapies (Figure 1B). On
average, each dataset has 32 210 cells, with the largest
dataset from NSCLC having 816 654 cells (31).

New functions of TISCH2

TISCH2 is not only a comprehensive resource of single-cell
gene expression in the TME but also provides many useful
analysis functions. The previous version of TISCH mainly
includes two modules, the Dataset module and the Gene
module. The updated TISCH2 includes two new functions,
CCIs and TF enrichment analyses, in the Dataset module,
and two new functions, survival and correlated gene analy-
ses, in the Gene module (Figure 2).

Dataset module functions. In the Dataset module,
TISCH2 supports the detailed exploration of a single
dataset or between multiple datasets. For each dataset,
TISCH2 will display its cancer type, species, platform
information, treatment, stage and related publications.
In particular, for the immunotherapy datasets, TISCH2
provides additional therapy-related analyses on the dataset
page, including cell type proportion comparison and
DEG analyses between patients in different treatment or

response groups, and immunotherapy-associated signature
visualization. The detailed analysis results will be shown in
six different tabs, including an overview page for clustering,
cell type annotation and DEGs, a gene page for expression
visualization, a GSEA page for functional analyses of each
cell type, a TF page for transcription regulator analyses, a
CCI page for cell–cell interaction analyses and a download
page for all the above data and analyses. We will mainly
introduce the new TF and CCI functions.

In the TF tab, the pre-calculated TF enrichment results
are available for users to identify the driver regulator of
different cell types. The enriched TFs were identified using
LISA based on the marker genes of each cluster. TISCH2
displayed the top enriched TFs for malignant cell clusters
and other cell clusters using heatmaps separately (Figure
3A). In addition, TISCH2 provides a dot plot representing
the top 50 enriched TFs for each cluster, as well as a table
listing the information of top-enriched TFs for each cluster
(Figure 3B).

In the CCI tab, TISCH2 provides the cell–cell commu-
nication analysis result to explore the interaction between
cell types in the current dataset. The number of significantly
interacted L–R pairs for all clusters will be shown using a
heatmap for a global overview (Figure 3C). For each cell
type cluster, TISCH2 will use a circus plot to display the in-
teraction probability of the selected cluster with other cell
types (Figure 3D). Finally, TISCH2 allows users to explore
the detailed L–R interaction pairs with two bubble plots
separately, with the selected cell type cluster both as the
source cluster and as the target cluster (Figure 3E).

Here, we use an example to demonstrate the usage of the
TF and CCI tabs. It has been reported that SPI1 and STAT1
play critical roles during monocyte to macrophage matu-
ration (32,33). We observed the consistent conclusion that
SPI1 and STAT1 with the largest TF score as highly ex-
pressed in cluster 18, which are monocyte and macrophage
cells in HNSC GSE103322 (Figure 3A, B). In addition,
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Figure 2. Overview of the current TISCH2 workflow and features. The words marked in red are updated datasets, newly added functions and features.
TISCH2 automatically parsed and collected tumor scRNA-seq datasets from GEO or ArrayExpress databases. All datasets were then uniormly processed
with a standardized workflow, including quality control, batch effect removal, cell clustering, differential expression analysis and cell type annotation
at multiple levels. TISCH2 displays datasets with relevant study information, including species, treatment, the number of patients and cells, technology
platform and the original study. In the Dataset module, TISCH2 provides cell type annotation visualization, multiple gene expression visualization, DEGs,
functional enrichment analysis for single or multiple datasets, CCI exploration and TF enrichment analysis for cluster levels. In the Gene module, TISCH2
provides single gene expression visualization across multiple datasets and cell types, the clinical effect of the gene by survival analysis and gene–gene
correlation visualization. TISCH2 provides a download page for users to access all the above data and analysis results.

for the above cluster in the CCI result, we noticed that
the monocyte and macrophages could directly interact with
CD8T through CD80–CTLA4 to suppress the immune re-
sponse of CD8T cells (Figure 3D). Hence, the TF and CCI
functions enable users to identify the drive regulator and
cell communications of interesting cell type subsets.

Gene module functions. The Gene module supports an ad-
vanced search for a single gene to explore its expression level
across different datasets or cancer types, co-expressed genes
and the clinical effect. The average gene expression tab dis-
plays the gene expression in different cell types and datasets
for all the selected datasets using a heatmap or violin plot.

The survival and gene correlation tabs were new func-
tions in the TISCH2. In the survival tab, a lollipop plot
displays the HR of the selected gene across 33 TCGA can-
cer types, for which a HR >1 means an increased mortal-

ity risk, and a HR <1 suggests a decreased mortality risk
(Figure 3F). In the gene correlation tab, the top 500 corre-
lated expressed genes for the input gene in all the selected
datasets are listed for users to discover the co-expression
pattern of genes. By default, TISCH2 will display the corre-
lated genes using all cells by a heatmap; however, to gain an
insight into cell type-specific co-expression, TISCH2 also
allows the identification of the correlated genes for a certain
lineage (Figure 3G). All of the correlation information was
also listed in the table at the bottom of the gene correlation
tab.

To explore the co-expression patterns and clinical effects
of the SPI1 gene, we queried it in the Gene module. We ob-
served that high expression of SPI1 tends to increase risk
in THYM and UVM cancer but to decrease the risk in
SKCM cancer, indicating that macrophages might have di-
verse roles in different cancer types (Figure 3F). In addi-
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Figure 3. The novel functions of TISCH2. (A and B) The TF enrichment result of HNSC GSE103322. (A) The heatmap shows the TF enrichment score
from LISA of each cluster. The color indicates the scaled enrichment P-value. (B) The dot plot shows the 50 top ranked enriched TFs of cluster 18, which
is a subset of Mono/Macro. The color of the circles represents the average expression level of corresponding genes. The names of the top 10 TFs are
labeled on the graph. (C and D) The overview of the cell communication result of HNSC GSE103322. The heatmap displays the number of interactions
between any two clusters, and the circus plot exhibits detailed interaction probability for cluster 18 with other clusters. (E) The significant communicated
ligand–receptor pairs for the source and target cluster is shown as a bubble plot. (F) The lollipop plot represents the hazard ratio of SPI1. The HR equals
1 as an intercept point, a HR >1 means an increased risk and HR <1 suggests decreased risk. The color represents the significance, where red and blue
are significant and light red and light blue are non-significant. (G) A real-time updated heatmap showing the gene–gene correlations of SPI1 across cancer
type datasets. Users can select the different cell lineage levels to explore the gene–gene correlation in detail. The title of the heatmap is consistent with the
selected gene and cell lineage.

tion, the gene correlation result showed CTSZ and CTSH
co-expressed with SPI1, especially in liver cancer, such
as LIHC GSE140228 10X and LIHC GSE166635. CTSZ
and CTSH are lysosomal cysteine proteinases important
for the phagocytosis function of macrophages, our analyses
suggest that the expression of these genes might be regulated
by SPI1 in macrophages.

DISCUSSION

We present TISCH2, an updated version of TISCH that
contains expanded data volume and new functionalities.
TISCH2 shows several advantages compared with the pre-
vious version. First, TISCH2 is a more comprehensive
TME single-cell data portal, which almost doubled the
covered cancer types and tripled the number of cells and
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datasets of the previous version. Second, TISCH2 provides
more functions for users to explore the datasets, including
driver TF identification, cell–cell communication analyses,
co-expressed genes across datasets and the clinical benefit
of the input gene. In the future, the TISCH team will con-
tinue to collect newly generated tumor scRNA-seq data and
update TISCH regularly. In addition, we will also make an
effort to provide new functions such as trajectory analysis,
including multiome information such as epigenetic land-
scapes, and spatial positions of the cell types in the TME.
With these new datasets and functions available, TISCH2
and its updated version will greatly benefit a wide range of
biomedical users, especially in the oncology and immunol-
ogy field.

DATA AVAILABILITY

The expression matrix, sample meta information, differen-
tial expression gene list, transcription factors and cell–cell
interactions displayed in the TISCH database can be di-
rectly downloaded from http://tisch.comp-genomics.org/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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