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Abstract 

Background  Immunotherapy has revolutionized cancer treatment, but most patients are refractory to immunother-
apy or acquire resistance, with the underlying mechanisms remaining to be explored.

Methods  We characterized the transcriptomes of ~92,000 single cells from 3 pre-treatment and 12 post-treatment 
patients with non-small cell lung cancer (NSCLC) who received neoadjuvant PD-1 blockade combined with chemo-
therapy. The 12 post-treatment samples were categorized into two groups based on pathologic response: major 
pathologic response (MPR; n = 4) and non-MPR (NMPR; n = 8).

Results  Distinct therapy-induced cancer cell transcriptomes were associated with clinical response. Cancer cells from 
MPR patients exhibited a signature of activated antigen presentation via major histocompatibility complex class II 
(MHC-II). Further, the transcriptional signatures of FCRL4+FCRL5+ memory B cells and CD16+CX3CR1+ monocytes 
were enriched in MPR patients and are predictors of immunotherapy response. Cancer cells from NMPR patients 
exhibited overexpression of estrogen metabolism enzymes and elevated serum estradiol. In all patients, therapy 
promoted expansion and activation of cytotoxic T cells and CD16+ NK cells, reduction of immunosuppressive Tregs, 
and activation of memory CD8+T cells into an effector phenotype. Tissue-resident macrophages were expanded after 
therapy, and tumor-associated macrophages (TAMs) were remodeled into a neutral instead of an anti-tumor pheno-
type. We revealed the heterogeneity of neutrophils during immunotherapy and identified an aged CCL3+ neutrophil 
subset was decreased in MPR patients. The aged CCL3+ neutrophils were predicted to interact with SPP1+ TAMs 
through a positive feedback loop to contribute to a poor therapy response.

Conclusions  Neoadjuvant PD-1 blockade combined with chemotherapy led to distinct NSCLC tumor microen-
vironment transcriptomes that correlated with therapy response. Although limited by a small patient sample size 
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subjected to combination therapy, this study provides novel biomarkers to predict therapy response and suggests 
potential strategies to overcome immunotherapy resistance.

Keywords  Immunotherapy, Tumor microenvironment, Non-small cell lung cancer, Single cell, Neutrophil

Background
Lung cancer is the leading cause of cancer-related death 
worldwide [1], with non-small cell lung cancer (NSCLC) 
representing approximately 85% of lung cancer cases [2]. 
Cancer immunotherapy through immune check point 
blockade (ICB) is the first-line treatment for advanced 
NSCLC without an identified driver-gene mutation [3]. 
For resectable NSCLC, immunotherapy prior to sur-
gery (neoadjuvant immunotherapy) is emerging as a 
promising therapeutic regimen [4]. A common measure 
of neoadjuvant immunotherapy efficacy is the “major 
pathologic response” (MPR), which is defined as having 
no more than 10% residual viable tumor cells by routine 
hematoxylin and eosin (H&E) staining after therapy [5]. 
Despite the benefits of immunotherapy, its efficacy by 
this measure is limited. The mean MPR rate of neoadju-
vant anti-PD-1/PD-L1 immunotherapy is approximately 
32% (range 18 to 63%) [6]. Most patients are refractory to 
therapy or acquire resistance, and the underlying mecha-
nisms remain to be explored.

The tumor microenvironment (TME) plays an impor-
tant role in tumor development, progression, metastasis, 
and drug resistance [7]. Immunotherapy remodels the 
TME, and the TME in turn influences the response to 
immunotherapy [8]. Previous studies have characterized 
TME remodeling after ICB and associated the changes 
with clinical outcomes. ICB treatment overcomes T cell 
dysfunction or exhaustion and promotes clonal expan-
sion of T cells [9]. Patients with clonotypic expansion 
of T cells respond best to ICB therapy [10]. Studies also 
suggest that the abundance of CD8+TCF7+ T cells and 
EOMES+CD69+CD45RO+ T cells in the TME before 
treatment predicts ICB response and better survival [11, 
12]. Other studies have indicated that the formation of 
tertiary lymphoid structures (TLS), which are aggrega-
tions of B cells, T cells, dendritic cells (DC), and high 
endothelial venules, promote immunotherapy response 
[13]. The myeloid component also has been reported to 
be associated with immunotherapy response, with a sub-
set of CD73+ macrophage persistence marking therapy 
resistance [14]. Most previous studies of immunotherapy 
and the TME focus on easily accessible cancer types such 
as melanoma. A recent study focusing on mutation-
associated neoantigen (MANA) specific CD8+ T cells in 
NSCLC reported that these cells had hallmark transcrip-
tional programs of resident memory T (Trm) cells during 
immunotherapy [15]. However, this study did not address 

the response of the entire TME in immunotherapy for 
NSCLC.

The dynamics of cancer cells and other immune cells, 
and a more comprehensive characterization of the TME 
of NSCLC during ICB treatment, is of interest for more 
accurately predicting patient response and providing 
novel therapeutic targets. Also of interest is charac-
terization of immunotherapy in combination with other 
drugs, which is increasingly common in clinical use. To 
explore mechanisms of immunotherapy resistance and 
their relation to changes in the TME after PD-1 blockade 
combined with chemotherapy, we performed single-cell 
RNA sequencing (scRNA-seq), bulk RNA-seq, and non-
targeted metabolomics from NSCLC samples.

Methods
Patient cohorts
Treatment-naïve patients with resectable NSCLC with 
EGFR/ALK mutation negative were enrolled in this 
study from September 2019 to May 2021 in our center. 
The patients received 2–4 cycles (3 weeks per cycle) of 
neoadjuvant therapy (PD-1 antibody + platinum-based 
chemotherapy), and then underwent surgery. In total, 39 
patients were enrolled in this study, including scRNA-seq 
cohort (n = 15), independent RNA-seq cohort (n = 21), 
and 3 additional patients who only donated peripheral 
blood samples. The clinical information of all patients 
was shown in Additional file 1: Table S1.

Sample collection
Informed consent was obtained prior to tissue acquisi-
tion, blood collection, and genomic sequencing for each 
patient. We obtained the primary tumor tissue by per-
cutaneous pulmonary biopsy, bronchoscopy biopsy, or 
endobronchial ultrasound (EBUS) biopsy before drug 
administration (Additional file  2: Fig. S1A). After the 
last cycle of neoadjuvant therapy, the fresh tumor tissues 
were collected immediately by surgical resection. We col-
lected 15 tumor samples from 15 patients for scRNA-seq 
and 21 pre-treatment tumor samples from 21 patients for 
bulk RNA-seq (Fig. 1A).

We collected 67 peripheral blood samples from 24 
patients at 3 timepoints: baseline (n = 24), on-treatment 
(at the first or second cycle, n = 24), and post-treatment 
(after the last cycle, n = 19) (Additional file 2: Fig. S1A). 
Of all the 24 patients, 9 patients were from the scRNA-
seq cohort and 12 patients were from the independent 
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RNA-seq cohort. Peripheral blood samples (5 ml) were 
collected and stored in tubes containing EDTA. Serum 
was isolated by centrifugation and stored in −80°C refrig-
erators until being used for non-targeted metabolomics.

Tissue dissociation and cell purification
Fresh samples from biopsy or surgery were isolated and 
transported rapidly to the research facility. Tissues were 
transported in a sterile culture dish with 10 ml 1× Dul-
becco’s phosphate-buffered saline (DPBS; Thermo Fisher, 
Cat. no. 14190144) on ice (4 °C) to remove the residual 
tissue storage solution, then minced into 1–3 mm3 pieces 
in another culture dish. We used 10 mg type I colla-
genase (Sigma, Cat. no. C0130) dissolved in 10 ml RPMI 
1640 medium (Thermo Fisher, Cat. no. 10-040-CM) with 
10% fetal bovine serum (FBS; Thermo Fisher, Cat. no. 
SV30087.02) to digest the tissues. Tissues were dissoci-
ated at 37 °C with a shaking speed of 50 r.p.m. Cell sus-
pensions were filtered using a 70-um nylon cell strainer 
and red blood cells were removed by 1× Red Blood Cell 
Lysis Solution (Thermo Fisher, Cat. no. 00-4333-57). Dis-
sociated cells were washed with 1× DPBS containing 2% 
FBS. Cells were stained with 0.4% Trypan blue (Thermo 
Fisher, Cat. no. 14190144) to check the viability on Coun-
tess® II Automated Cell Counter (Thermo Fisher).

Single‑cell RNA sequencing
To capture single-cell transcriptomic information of lung 
cancer samples, we used the BD Rhapsody Single-Cell 
Analysis System (BD Biosciences) according to the man-
ufacturer’s protocol  (supported by Shanghai Biotech-
nology Corporation). Single-cell capture was achieved 
by the random distribution of a single-cell suspension 
across ~200,000 microwells. Beads with unique molecu-
lar identifiers (UMIs) and cell barcodes were loaded close 
to saturation, so that each cell was paired with a bead in 
a microwell. After exposure to cell lysis buffer, polyade-
nylated RNA molecules hybridized to the beads. Beads 
were retrieved into a single tube for reverse transcription. 
On cDNA synthesis, each cDNA molecule was tagged on 
the 5′ end (that is, the 3′ end of a messenger RNA tran-
script) with UMI and cell label indicating its cell of origin. 
Whole transcriptome libraries were prepared using the 
BD Resolve single-cell whole transcriptome amplification 

workflow. Briefly, Rhapsody beads were then subject to 
second-strand cDNA synthesis, adaptor ligation, and 
universal amplification. Sequencing libraries were pre-
pared using random priming PCR of the whole transcrip-
tome amplification products to enrich the 3′ end of the 
transcripts linked with the cell label and UMI. Sequenc-
ing libraries were quantified using a High Sensitivity 
DNA Chip (Agilent) on a Bioanalyzer 2100 and the Qubit 
High Sensitivity DNA Assay (Thermo Fisher Scientific). 
The libraries were sequenced on NovaSeq6000 (Illumina) 
using 2×150 chemistry. The BD Rhapsody analysis pipe-
line was used to process raw sequencing data (FASTQ 
files).

Bulk RNA sequencing
RNA was isolated from fresh frozen tissues and perform 
RNA-seq. Total RNA was isolated with the RNeasy Mini 
Kit (Qiagen). The NEBNext Ultra RNA library (New Eng-
land Biolabs) was used to construct the RNA-seq librar-
ies according to the manufacturer’s protocol. Then, the 
quality-checked libraries were sequenced on the Illumina 
Novaseq 6000 platform.

Non‑targeted metabolomics
Metabolite extraction
The serum samples (100 μL) were placed in the EP tubes 
and resuspended with prechilled 80% methanol and 
0.1% formic acid by a well vortex. Then the samples were 
incubated on ice for 5 min and centrifuged at 15,000g, 
4°C for 20 min. Some of the supernatant was diluted to 
final concentration containing 53% methanol by LC-MS-
grade water. The samples were subsequently transferred 
to a fresh Eppendorf tube and then were centrifuged 
at 15,000g, 4°C for 20 min. Finally, the supernatant was 
injected into the LC-MS/MS system analysis.

UHPLC‑MS/MS analysis
UHPLC-MS/MS analyses were performed using a Van-
quish UHPLC system (Thermo Fisher, Germany) coupled 
with an Orbitrap Q Exactive™ HF mass spectrometer 
(Thermo Fisher, Germany) in Novogene Co., Ltd. (Bei-
jing, China). Samples were injected onto a Hypesil Gold-
column (100×2.1 mm, 1.9μm) using a 17-min linear 
gradient at a flow rate of 0.2 mL/min. The eluents for the 

Fig. 1  scRNA-seq analysis of NSCLC during therapy. A Scheme of the overall study design. B Uniform manifold approximation and projection 
(UMAP) plot of all cells colored by major cell types according to canonical markers. C Bar plots indicating the proportion of major cell lineages in 
each patient. D Boxplot showing cellular fractions of T, natural killer (NK), B, myeloid cells and neutrophils in TN (n = 3), MPR (n = 4), and NMPR (n 
= 8) patients. Center line indicates the median value, lower and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers 
denote 1.5× interquartile range. Each dot corresponds to one sample. All adjusted P values were larger than 0.05. One-sided unpaired Wilcoxon 
test was used, and the P values were adjusted by the FDR method. E Representative images of immunohistochemistry (IHC) staining of canonical 
surface markers for T (CD3), NK (CD56), and B (CD20) cells in a TN (S01b), MPR (P06), and NMPR (P07) patient, respectively. F Quantification of 
fractions of T, NK, and B cells from the IHC images. One-sided unpaired Wilcoxon test was used

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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positive polarity mode were eluent A (0.1% FA in Water) 
and eluent B (Methanol). The eluents for the negative 
polarity mode were eluent A (5 mM ammonium acetate, 
pH 9.0) and eluent B (Methanol). The solvent gradient 
was set as follows: 2% B, 1.5 min; 2–100% B, 12.0 min; 
100% B, 14.0 min; 100-2% B, 14.1 min; 2% B, 17 min. Q 
Exactive™ HF mass spectrometer was operated in posi-
tive/negative polarity mode with a spray voltage of 3.2 kV, 
capillary temperature of 320°C, sheath gas flow rate of 40 
arb, and aux gas flow rate of 10 arb.

Immunohistochemistry
Tissues were fixed in 4% paraformaldehyde, embedded 
in paraffin, cut into sections, and placed on adhesion 
microscope slides. Sections were subjected to immu-
nohistochemical (IHC) staining according to standard 
procedures. We performed the IHC by using CD3 rabbit 
anti-human antibody (Biolynx, BX50022), CD20 mouse 
anti-human antibody (Dako, M0755), and CD56 mouse 
anti-human antibody (Cell Signaling Technology, 3576S). 
The above primary antibodies were incubated at 4°C 
overnight followed by using the BOND™ Polymer Refine 
Detection Kit (Leica, DS9800) according to the manufac-
turer’s instructions. Whole slide scanning was performed 
using panoramic MIDI under a ×20 objective lens. 
Tumor and stroma recognition was performed using the 
“tissue classification” module of HALO tissue analysis 
software (Indica Lab), based on the tumor morphology.

Multiplex immunofluorescence
Multiplex immunofluorescence staining was performed 
using PANO 4-plex IHC kit (cat 10001100100, Panovue). 
We performed the fluorescent dyes by using the CD20 
mouse anti-human antibody (Dako, M0755), CD86 rab-
bit anti-human antibody (CST, 91882S), and FCRL4 
rabbit anti-human antibody (Abcam, ab239076). Differ-
ent above primary antibodies were applied, followed by 
horseradish peroxidase-conjugated secondary antibody 
incubation and tyramide signal amplification. The slides 
were microwave heat-treated after each TSA operation. 
Nuclei were stained with DAPI (SIGMA-ALDRICH, 
D9542) after all the human antigens had been labelled. 
To obtain multispectral images, the stained slides 
were scanned using the Mantra System (PerkinElmer, 
Waltham, Massachusetts, USA), which captures the fluo-
rescent spectra at 20-nm wavelength intervals from 420 
to 720 nm with identical exposure time; the scans were 
combined to build a single stack image.

Single‑cell RNA‑seq data generation and quality control
scRNA-seq FASTQ files were processed using the BD 
Rhapsody Whole Transcriptome Analysis (WTA) Pipe-
line to get a unique molecular identifier (UMI) matrix 

for each sample. The matrix of read counts per gene per 
sample was further analyzed by the Seurat package (ver-
sion 3.2.2) [16] in the R software (version 3.6.3). For each 
cell, we used four quality control (QC) measures. Cells 
meeting any of the following criteria were excluded: (1) 
< 500 expressed genes, (2) > 20% UMIs of mitochon-
dria genes, (3) > 50% UMIs of ribosome genes, and (4) 
housekeeping score (defined as the sum of the UMIs of 
three canonical housekeeping genes: ACTB, GAPDH and 
MALAT1) < 1. To exclude data from droplets contain-
ing more than one cell, doublet detection and removal 
were performed using Scrublet (version 0.2.1) [17]. An 
expected doublet rate parameter of 0.025 was used, and 
doublet score thresholds were chosen manually to divide 
putative singlet and neotypic doublet modes in the score 
distribution. Predicted doublets were then removed from 
gene-barcode matrices.

Across‑sample integration
The gene expression matrices were normalized by the 
NormalizeData function with default parameters. To 
adjust for biological sources of variation between sam-
ples, the standard anchor-based workflow for dataset 
integration in Seurat was used. As a previous study [18], 
3000 or 4000 (for B cell clustering) variable features for 
CCA (canonical correlation analysis) [19] were chosen 
based on stabilized variance, and integration anchors 
were identified using the first 20 reduced dimensions. 
Integration-transformed expression values were used 
only for dimension reduction and clustering. The original 
log-normalized expression values were used for all differ-
ential expression and gene set level analyses.

Dimension reduction and unsupervised clustering
Principal components analysis (PCA) was performed 
on the integration-transformed expression matrix using 
the RunPCA function, and the first 15 principal compo-
nents (PCs) were used in the FindNeighbors function. 
The resolution parameters of the FindClusters function 
were different for different cell types, with 0.6 for all cells, 
0.4 for T and myeloid cells, and 0.3 for epithelia, B cells, 
and neutrophils. Uniform manifold approximation and 
projection (UMAP) was performed for visualization in 
two dimensions using the RunUMAP function with the 
same PCs and other default parameters. Major cell line-
ages were assigned to each cluster of cells using the abun-
dance of canonical marker genes, and marker genes for 
each cluster were found using the FindAllMarkers func-
tion with the parameter “min.pct = 0.25, thresh.use = 
0.25”. For an immune cluster expressing cycle cell genes, 
we run clustering again to split it into T, B, and myeloid 
lineages. Notably, when we did cell clustering, we manu-
ally removed the clusters that expressed two or more 
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major lineage markers (such as LYZ for myeloid cells and 
CD3E for T cells) on UMAP plot and probably were dou-
blets that were not recognized by Scrublet.

CNV estimation and identification of malignant cells
To identify malignant cells from epithelia, we used the 
CopyKAT algorithm (version 0.1.0) [20] to estimate the 
copy number variations (CNVs). The stromal cells (fibro-
blasts and endothelia) were used as normal reference, 
and the parameters were default. The sum of calculated 
CNV for each gene per cell was defined as the CNV score 
of the cell.

Differential expression analysis and gene set variation 
analysis (GSVA)
Differential expression analysis comparing cells from 
treatment exposure or response groups was performed 
using the FindAllMarkers function with the parameter 
“min.pct = 0.25, thresh.use = 0.25”.

To assign pathway activity estimates to individual cells, 
we applied GSVA using standard settings, as imple-
mented in the GSVA R package (version 1.32.0), as 
described previously [21]. The gene set of 50 hallmark 
pathways we investigated (h.all.v7.2.symbols.gmt) was 
downloaded from the Gene Set Enrichment Analysis 
(GSEA) website (https://​www.​gsea-​msigdb.​org/​gsea/​
index.​jsp). The differential activities of pathways between 
groups were calculated using limma R package (version 
3.42.2). Significantly disturbed pathways were identified 
with Benjamini-Hochberg–corrected P value of ≤ 0.01.

Gene module enrichment analysis
To estimate the signature of MHC-II antigen presenta-
tion in cancer cells, we calculated the enrichment scores 
for each cell using the AddModuleScore function in 
Seurat with the gene list from the REACTOME_MHC_
CLASS_II_ANTIGEN_PRESENTATION pathway (c2.
cp.reactome.v7.2.symbols.gmt, download from https://​
www.​gsea-​msigdb.​org/​gsea/​index.​jsp). To explore the 
cytotoxic and exhausted functions of T and NK cells, we 
calculated the cytotoxic score and exhausted score for 
each cell using the canonical cytotoxic (GZMA, GZMB, 
GZMK, GNLY, IFNG, PRF1, and NKG7) and exhausted 
(LAG3, TIGIT, PCCD1, HAVCR2, CTLA4, LAYN, and 
ENTPD1) markers, respectively. With the same method, 
we used the gene list (Additional file  3: Table  S2) in 
“LM22.xls” from CIBERSORT [22] to estimate the phe-
notype (M0, M1, or M2) for each macrophage. We also 
calculated the antigen presentation score for DCs with 
the previously reported markers (Additional file  3: 
Table S2) [23]. A mean value of module scores of a cell 

cluster (≥ 10 cells) from an individual sample was calcu-
lated to present the signature level.

Cellular fraction calculation
For each sample, we calculated the cellular fraction for 
each major cell lineage (T, B, myeloid cells), and for the 
subpopulations of major cell lineages, cellular propor-
tions were calculated by the fractions in corresponding 
major immune lineages. Notably, the samples that had 
less than 10 cells in a major lineage were removed to do 
downstream statistic test. The significance of differences 
among response groups for the fractions was compared 
using one-sided unpaired Wilcoxon rank sum test, and 
the P values were adjusted by the false discovery rate 
(FDR) method for multiple parallel tests.

Trajectory analysis
RNA velocity
The bam files from the WTA Pipeline were converted 
into sam files first using samtools (version 1.7) [24]. Then 
the cell barcode tag “MA” for each sequence was replaced 
by “UB” which could be recognized by the velocyto run 
function from RNA velocity (version 0.17.17) algorithm 
[25]. We removed the sequences without cell barcode, 
and the sam files were converted back into bam files and 
sorted using samtools. The sorted bam files were used to 
generate loom files using the velocyto run function with 
the genome annotation file “GRCh38.gtf”. The loom files 
for each sample were merged into one loom file. To calcu-
late the velocity and visualize on plot, we used the scVelo 
(version 0.2.3) [26] method using steady-state mode, fol-
lowing the Seurat to RNA velocity guides (https://​github.​
com/​basil​khuder/​Seurat-​to-​RNA-​Veloc​ity).

Monocle2
We also used Monocle2 (version 2.14.0) [27] to infer 
the cell lineage trajectory of T cells, myeloid cells, DCs, 
and neutrophils with the top 1000 signature genes with 
q value < 0.001 calculated by differentialGeneTest func-
tion. The differentiation trajectory was inferred with the 
default parameters of Monocle after dimension reduction 
and cell ordering.

Cell‑cell interaction analysis
We used CellPhoneDB (version 2.1.5) [28] to infer cell-
cell interaction between different cell types. This method 
infers the potential interaction strength between two cell 
subsets based on gene expression level and provides the 
significance through permutation test (1000 times). The 
enriched ligand-receptor interactions between two cell 

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://github.com/basilkhuder/Seurat-to-RNA-Velocity
https://github.com/basilkhuder/Seurat-to-RNA-Velocity
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subsets were calculated based on the permutation test. 
We extracted significant ligand-receptor pairs with P 
value < 0.01.

NicheNet analysis
NicheNet (version 1.0.0) [29], a powerful tool that pre-
dicts ligands driving the transcriptomic changes of target 
cells, was used to identify potential ligands that drive the 
unique phenotype of B cell and neutrophil subsets. As 
described previously [30], we used all expressed genes 
of the B4_FCRL4 cells as the background of genes and 
the top 50 genes ordered by log2FC as gene sets of inter-
est. Genes were considered as expressed when they have 
nonzero values in at least 10% of the cells in a cell type. 
We only used the expressed receptors in B4_FCRL4 cells 
to construct the expressed ligand-receptor interactions 
and calculate the ligand activity using the predict_ligand_
activities function. For the  Neu_CCL3 and Neu_IFIT3 
cells, the same analyses were performed.

SCENIC analysis
As descripted [30], activated regulons in each neutrophil 
subset were analyzed using SCENIC [31] with raw count 
matrix as input. The co-expression network was calcu-
lated by runGenie3 and the regulons were identified by 
RcisTarget. The regulon activity for each cell was scored 
by AUCell.

Bulk RNA‑seq data processing and quantification
Raw FASTQ files were aligned on the hg38 genome ref-
erence using the STAR aligner (version 2.7.4a) [32] with 
default parameters. Salmon (version 1.3.0) [33] was used 
to quantitate gene expression by transcripts per kilobase 
million (TPM). The TPM matrix was transformed by 
log2(TPM+1).

Gene signature estimation in bulk RNA‑seq
The cell signatures of B4_FCRL4 and Mono_CX3CR1 
were estimated by ssGSEA method in the GSVA R pack-
age (version 1.32.0). The ssGSEA transforms specific 
gene expression patterns into quantities of cell popula-
tions in individual tumor samples at the bulk level. The 
markers of the two cell types (Additional file 3: Table S2) 
were used as the gene sets in the gsva function with 
the parameters “method=‘ssgsea’, kcdf=‘Gaussian’, abs.
ranking=TRUE”. For melanoma cohort 2 [34], we ana-
lyzed the prognostic value of the two cell signatures. The 
patients were divided into high and low signature groups 
by the median value, and the Kaplan–Meier survival 
curves with the cumulative number of events table and 
log-rank test were plotted by survminer (version 0.4.8) 
and survival (version 3.1-8) R package.

TCGA analysis
The analyses of lung adenocarcinoma (LUAD) from 
the TCGA database were performed on the TCGA 
visualization web server, GEPIA2 (http://​gepia2.​can-
cer-​pku.​cn/), developed by Zeming Zhang [35]. The 
server provided several function modules, and we 
used the “Survival Analysis” module to explore the 
correlation between the expression of genes of inter-
est and overall survival. The patients were divided 
into high and low signature groups and hazards ratio 
(HR) was calculated. The apoptosis signature was cal-
culated by ssGSEA method by the gene list of apop-
tosis from KEGG_APOPTOSIS pathway (c2.cp.kegg.
v7.2.symbols.gmt, download from https://​www.​
gsea-​msigdb.​org/​gsea/​index.​jsp). The signatures of 
Macro_SPP1 and Neu_CCL3 were estimated by the 
marker genes of the two cell types (Additional file 3: 
Table S2).

Metabolomic data processing and metabolite 
identification
The raw data files generated by UHPLC-MS/MS were 
processed using the Compound Discoverer 3.1 (CD3.1, 
Thermo Fisher) to perform peak alignment, peak pick-
ing, and quantitation for each metabolite. The main 
parameters were set as follows: retention time toler-
ance, 0.2 min; actual mass tolerance, 5ppm; signal inten-
sity tolerance, 30%; signal/noise ratio, 3; and minimum 
intensity, etc. After that, peak intensities were normal-
ized to the total spectral intensity. The normalized data 
was used to predict the molecular formula based on 
additive ions, molecular ion peaks, and fragment ions. 
Then peaks were matched with the mzCloud (https://​
www.​mzclo​ud.​org/), mzVault, and MassList database to 
obtain the accurate qualitative and relative quantitative 
results. When data were not normally distributed, nor-
mal transformations were attempted using of area nor-
malization method.

Drug sensitivity analysis
The gene expression data (RPKM matrix) of NSCLC cell 
lines was downloaded from the (CCLE) database (https://​
porta​ls.​broad​insti​tute.​org/​ccle/), and the IC50 data of 
drugs was downloaded from the Genomics of Drug Sen-
sitivity in Cancer (GDSC) database (www.​cance​rRxge​
ne.​org). The gene expression of 65 NSCLC cell lines and 
the IC50 data of 16 drugs were used to analyze in this 
study. We first estimated the signature of the 5 AKR fam-
ily genes (AKR1C1-3 and AKR1B1/10) for each cell line 
using ssGSEA method, then we calculated the Pearson 
correlation coefficient between the signature and IC50 
value for each drug.

http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.mzcloud.org/
https://www.mzcloud.org/
https://portals.broadinstitute.org/ccle/
https://portals.broadinstitute.org/ccle/
http://www.cancerrxgene.org
http://www.cancerrxgene.org
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Statistics
All statistical analyses and presentations were performed 
using R software (version 3.6.3). All statistical tests used 
are defined in the figure legends. Statistical significance 
was set at P or adjusted P < 0.05.

Results
scRNA‑seq analysis of NSCLC during PD1 blockade 
combined with chemotherapy
We prospectively collected fresh tumor samples from 
a total of 15 patients with clinical stage IIIA NSCLC for 
analysis by scRNA-seq (Fig.  1A, Additional file  2: Fig. 
S1A and Additional file 1: Table S1). For three patients, 
samples were collected by biopsy before treatment and 
classified as treatment naïve (TN; n = 3). For the remain-
ing 12 patients, samples were taken from surgical resec-
tions after PD-1 antibody combined with chemotherapy 
treatment. The 12 post-treatment samples were catego-
rized into two groups: MPR (n = 4) and NMPR (non-
major pathologic response; n = 8) based on pathologic 
assessment [5]. The dataset analyzed here also includes 
bulk RNA-seq from fresh biopsies from 21 independent 
TN patients (Additional file 1: Table S1).

The fresh tissues were rapidly digested to a single-cell 
suspension, and all single-cell transcriptomes were gen-
erated using commercial BD Rhapsody platform. After 
quality control and removal of doublets, transcriptomes 
from 92,330 cells with a median of 1256 genes per cell 
were used for further analyses. To mitigate batch effects 
from patients (Additional file  2: Fig. S1B) and allow for 
joint analysis of malignant and non-malignant cells, we 
performed canonical correlation analysis (CCA) and 
aggregated cells from different patient samples. Unsuper-
vised clustering of all cells identified 26 clusters (Fig. 1B 
and Additional file 2: Fig. S1C), with no significant batch 
effects observed across different patients, PD-1 antibod-
ies, or response groups (Additional file  2: Fig. S1D-E). 
Further, the average gene numbers and unique molecu-
lar identifiers (UMIs) were comparable between different 
clusters (Additional file 2: Fig. S1F). We then annotated 
the 26 clusters into T cells, NK cells, B cells, myeloid 
cells, neutrophils, plasma cells, plasmacytoid DC (pDC), 
mast cells, stromal cells (fibroblasts/endothelia), and epi-
thelial cells, according to the expression of corresponding 
canonical marker genes (Fig. 1B and Additional file 2: Fig. 
S1G).

To characterize the TME remodeling in response 
to treatment, we calculated the fraction of different 
cell types in TN, MPR, and NMPR patients (Fig.  1C, 
D). We observed that the fraction of T cells, NK cells, 
and B cells were increased in MPR patients, although 
we did not get positive P values due to limited sample 
sizes (Fig.  1D). To further validate this, we performed 

immunohistochemical (IHC) staining in 10 post-treat-
ment surgical tumor tissues (3 MPR and 7 NMPR, cor-
responding to scRNA-seq samples) and another 5 
treatment-naïve surgical tumor tissues (Additional file 1: 
Table  S1). IHC staining verified the increased abun-
dance of T (CD3+) and B (CD20+) cells in MPR sam-
ples, except NK (CD56+) cells (Fig. 1E, F, and Additional 
file 2: Fig. S2). This was consistent with previous reports 
that T and B cell expansion was associated with better 
response to ICB [10, 13]. Myeloid cells were enriched in 
the TME, but showed no obvious differences among TN, 
MPR, and NMPR patients (Fig.  1D). However, myeloid 
cells are known to have diverse and complex functions 
in the TME [36], which are further explored later in this 
study. We also identified 5–20% cells as neutrophils in 
the TME of NSCLC [37], which are usually absent in pre-
vious scRNA-seq studies using 10X Genomics, reflecting 
the advantage of BD Rhapsody in capturing neutrophils.

Increase of normal lung epithelial cells and detection 
of residual cancer cells in pCR patients after combined 
therapy
We next investigated populations of epithelial cells. 
We first re-clustered the epithelial cells into 10 popula-
tions and separated malignant and normal cells using 
the CopyKAT algorithm [20] based on copy number 
variations (CNVs) (Fig.  2A, B and Additional file 2: Fig. 
S3A-B). Clusters E0_DST, E3_PCNA, E4_TOP2A, E7_
SERPINB9, and a subpopulation of E1_KRT17 had higher 
CNV scores than other clusters and were inferred to be 
malignant cells (Fig.  2B and Additional file  2: Fig. S3C-
D). The normal clusters were annotated as alveolar cells 
(E5_SFTPA2, type I: AGER, type II: SFTPA2), secretory 
club cells (E8_SCGB1A1), ciliated cells (E9_TPPP3), and 
basal epithelial cells (subpopulation of E1_KRT17) based 
on traditional markers (Fig. 2A, B) [21]. The fractions of 
alveolar cells (E5_SFTPA2), club cells (E8_SCGB1A1), 
and ciliated cells (E9_TPPP3) were increased after ther-
apy, especially for MPR patients (Additional file  2: Fig. 
S3E-F). This indicated that combined therapy promoted 
expansion of normal epithelial cells after eliminating 
malignant cells. The normal epithelial cells may contrib-
ute to reconstruct normal lung structure in the previous 
tumor bed. In addition, it also has been reported that 
SCGB1A1+ club cells could increase the efficacy of ICB 
in lung cancer by promoting infiltration of cytotoxic cells 
[38].

When comparing the cellular fraction of epithelial cells 
between different patients, we noted the enrichment of 
the malignant cluster E7_SERPINB9 in P06. This is unex-
pected, because P06 was classified as having a pathologic 
complete response (pCR; Additional file  2: Fig. S3E,G), 
which is defined by a complete absence of viable tumor 
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Fig. 2  Epithelial cell reprograming after therapy. A UMAP plot of epithelia colored by clusters. The cells within the black dash line were malignant 
cells based on copy number variations (CNVs) inferred by the CopyKAT algorithm. B UMAP plots of epithelia colored by CopyKAT and normal 
lung epithelial markers. In the left top panel, the cells in red were predicted to be malignant cells and blue were normal cells. The cells in cluster 
E1_KRT17 contained both malignant and normal cells. C Boxplots of the average expression of CX3CL1, CD74, and HLA-DRA in malignant cells in 
TN (n = 3), MPR (n = 4), and NMPR (n = 7, one sample with less than 10 malignant cells was removed) patients. Center line indicates the median, 
lower, and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers denote 1.5× interquartile range. One-sided t-test was 
used, and the P values were adjusted by the FDR method. D Boxplots of the average expression of ARK1C1-3 in malignant cells in TN (n = 3), MPR (n 
= 4), and NMPR (n = 7) patients. One-sided t-test was used, and the P values were adjusted by the FDR method. E Boxplot of the average signature 
score in malignant cells in TN (n = 3), MPR (n = 4), and NMPR (n = 7) patients. One-sided t-test was used. F Longitudinal serums were collected 
from 24 patients (10 were assessed as MPR, and 14 as NMPR after surgery) at baseline, on-treatment and post-treatment timepoint. Non-targeted 
Metabolomic was conducted to detect the abundance of β-estradiol. G Boxplots of the β-estradiol abundance relative to baseline in 24 patients (10 
patients were assessed as MPR and 14 as NMPR after surgery) at on-treatment and post-treatment timepoint. Two-sided unpaired Wilcoxon test was 
used. H Correlation analysis between the signature of AKR family genes and IC50 values in NSCLC cell lines under the condition of different drugs. P 
values were determined by two-sided Pearson correlation test
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cells upon H&E staining [5]. Although it is possible that 
this arose from sampling bias among the histopathologic 
slides, it is more likely that the sample from P06 contains 
malignant cells with genome alterations, but not mor-
phological changes that can be detected by traditional 
histopathology. Our observation is consistent with pre-
vious reports that pCR patients may nonetheless expe-
rience tumor recurrence [39]. This reflects the presence 
of molecular residual disease (MRD) in pCR patients, 
a rising biomarker for NSCLC immunotherapy [40]. 
MRD is generally detected by circulating tumor DNA in 
serum. This case suggests that scRNA-seq has the ability 
in assessing MRD, which may be necessary to detection 
even for pCR patients.

Distinct molecular characteristics of malignant cells 
distinguish MPR and NMPR
To better characterize the malignant cell transcrip-
tion programs activated in response to therapy, we per-
formed differential expression analysis among TN, MPR, 
and NMPR patients. We were particularly interested in 
expression patterns that may drive interactions with the 
immune system and perform as signatures of therapy 
response. In response to therapy, malignant cells from 
MPR patients highly expressed CX3CL1, CD74, and 
major histocompatibility complex class II (MHC-II) genes 
(Fig. 2C and Additional file 2: Fig. S4A). Each key compo-
nent of this MPR signature is addressed in turn below.

CX3CL1 is the ligand of CX3CR1. Previous stud-
ies have reported that CX3CR1 is highly expressed in 
many immune cells including NK cells [41] and mono-
cytes [42]. CX3CL1 was downregulated in lung adeno-
carcinoma (LUAD) tumors compared to normal lung 
tissues in TCGA cohorts (Additional file  2: Fig. S4B), 
indicating tumor immune evasion. Therefore, cancer cells 
expressing CX3CL1 in response to therapy may promote 
immune cell infiltration into the TME, thereby improving 
overall survival (Additional file 2: Fig. S4D).

CD74 and MHC-II genes, also components of the 
MPR signature, are required for tumor antigen presen-
tation [43]. We observed that the gene signature of anti-
gen presentation via MHC-II was higher in cancer cells 
from MPR patients than TN or NMPR patients (Addi-
tional file 2: Fig. S4C). Previous studies have shown that 
MHC-II expression is associated with anti-PD-1 therapy 
response [44], progression-free, and overall survival in 
melanoma [45]. Consistent with these observations, 
higher expression of CD74 and HLA-DRA was associ-
ated with a better prognosis in TCGA-LUAD cohorts 
(Additional file 2: Fig. S4D).

Compared to TN and MPR patients, we observed that 
enzymes in the Aldo-Keto Reductase family (AKR1B1/10 
and AKR1C1-3) were highly expressed in cancer cells 

from NMPR patients (Fig. 2D and Additional file 2: Fig. 
S4E-F). The AKR1B family has been previously reported 
to promote tumor metastasis and drug resistance [46–
48], and the AKR1C family (hydroxysteroid dehydroge-
nases) was involved in estrogen metabolism, catalyzing 
the reduction of estrone to β-estradiol [49]. Consistent 
with this, Gene Set Variation Analyses (GSVA) revealed 
that following combined therapy, estrogen response path-
ways were upregulated in malignant cells from NMPR 
patients (Fig.  2E and Additional file  2: Fig. S4G). Only 
one of the eight (12.5%) NMPR patients was female, while 
two of the four (50%) patients in MPR group were female 
(Additional file 1: Table S1). None of the 15 patients used 
any estrogen-related drugs during therapy. Thus, the data 
suggest that estrogen metabolism may be aberrantly high 
in NMPR patients following treatment.

To validate this, we used non-targeted metabolomics to 
detect the abundance of steroids in serum from cells col-
lected at baseline (before neoadjuvant therapy), on-treat-
ment (at the first or second cycle, 3 weeks per cycle, total 
2-4 cycle) and post-treatment (4 weeks after the last drug 
administration, blood samples were collected before sur-
gery) in 10 MPR (30% female) and 14 NMPR (7% female) 
patients (Fig. 2F and Additional file 1: Table S1). In con-
firmation of the previous result, levels of β-estradiol were 
significantly elevated in NMPR patients compared to 
baseline during therapy (Fig.  2G, Additional file  2: Fig. 
S4H and Additional file 4: Table S3). When removing the 
patients from scRNA-seq cohort, the results were similar 
(Additional file 2: Fig. S4I). Thus, elevated estrogen levels 
in serum could reflect poor response to immunotherapy. 
Estradiol has been reported to be an immunosuppressor 
in the TME [50], through promoting the infiltration of 
M2 macrophages [51], mobilization of myeloid-derived 
suppressor cells (MDSCs) [52], and expansion of Tregs 
[53]. These suggested that estradiol may generate an 
immunosuppressive TME in the NMPR patients.

To identify potential drugs that may be effective on 
cancer cells in NMPR patients, we explored data in 
NSCLC cell lines from the Genomics of Drug Sensi-
tivity in Cancer (GDSC) database. We found that the 
NMPR signature was negatively correlated with the IC50 
(half the maximal inhibitory concentration) of 17-AAG 
(Fig.  2H), an inhibitor of HSP90, suggesting that can-
cer cells in NMPR patients may be sensitive to 17-AAG. 
Notably, 17-AAG is reported to inhibit estrogen signaling 
by disrupting HSP90 [54].

The degree of cytotoxic T/NK cell expansion and reduction 
of suppressive Tregs after combined therapy is positively 
associated with pathologic response
Next, we explored the dynamics of immune cell lineages 
in the TME in response to therapy. Since T cells are the 
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most abundant tumor-infiltrating lymphocytes in the 
TME, we re-clustered T/NK cells and identified 14 clus-
ters (Fig.  3A, B and Additional file  2: Fig. S5A). These 
includes 2 subtypes of NK cells (NK_FCGR3A and NK_
KLRD1), 5 subtypes of CD8+ T cells (CD8_IL7R, mem-
ory T [Tm]; CD8_GZMK, effector memory T [Tem]; 
CD8_GZMB, Trm; CD8_HAVCR2, exhausted T [Tex] 
and CD8_STMN1, cycling effector T), 4 subtypes of 
conventional CD4+ T cells (CD4_CCR7, naïve T; CD4_
IL7R, memory T; CD4_MAF, mature follicular helper T 
[Tfhs] [55]; and CD4_CXCL13, naïve Tfhs), 2 subtypes 
of regulatory T (Treg) cells (Treg_SELL, naïve-like Treg; 
Treg_CTLA4, activated Treg), and 1 proliferating sub-
type (T_MKI67).

We further calculated the cytotoxic and exhausted 
gene signatures for CD8+ T cells and NK cells for TN, 
MPR, and NMPR patients. The cytotoxic and exhausted 
signatures were both significantly increased after therapy 
(Fig. 3C, D). This corresponds to an increase in the fac-
tions of all CD8+ T clusters after therapy (Fig. 3E). Rela-
tive to TN patients, the fractions of Tem (CD8_GZMK) 
and Trm (CD8_GZMB) and cycling effector T cells 
(CD8_STMN1) were increased in post-treatment sam-
ples, with the increase more pronounced in MPR patients 
(Fig.  3E). The CD8_GZMK cells can be resident in the 
TME and then locally expand after ICB, or newly infil-
trate from peripheral blood [56]. The increase of Trm 
(CD8_GZMB) was consistent with expansion of neoanti-
gen-specific T cells in NSCLC after immunotherapy [15].

We observed a higher fraction of Tex (CD8_HAVCR2) 
in both MPR and NMPR patients relative to TN patients 
following combined therapy. Recent studies have 
reported that exhausted T cells are specifically derived 
from tumor-specific T cells [57], and an increase in 
exhausted-like T cells is associated with ICB response 
[58]. To determine the source of exhausted T cells, we 
performed differential expression analysis before and 
after therapy in exhausted T cells (Additional file 2: Fig.
S5B). We found that the transcription factors (TFs), 
NR4A2-3, that are associated with T cell exhaustion [59] 

were enriched in TN patients. This indicates that the T 
cells may have been exhausted before treatment, driven 
by NR4A2/3 during chronic T cell dysfunction. Cyto-
toxic (GZMH, NKG7, and PRF1) and exhausted markers 
(LAG3 and TIGIT) were both highly expressed in post-
treatment patients. Tex cells that remain after treatment 
may arise from the coupled activation, expansion, and 
exhaustion process for cytotoxic T cells, which has been 
reported to be more evident in responders [18].

Cluster NK_FCGR3A was most representative of 
cytotoxic cells and was distinguished from NK_KLRD1 
cells by expression of FCGR3A (CD16a), FGFBP2, and 
CX3CR1 (Fig. 3B) [41]. Given the expression of CX3CL1 
in cancer cells from MPR patients (Fig. 2C), it was possi-
ble that NK_FCGR3A cells were recruited into the TME 
by CX3CL1. As expected, cell-cell interaction analy-
sis using the CellPhoneDB algorithm [28] showed the 
CX3CL1-CX3CR1 interaction between cancer cells and 
NK_FCGR3A cells was significantly enriched in MPR 
patients (Fig. 3F).

We next focused on Tregs. Activated Tregs have been 
previously reported to have a stronger immunosup-
pressive function than naïve Tregs, and to be correlated 
with poor prognosis [60]. Consistently, activated Tregs 
(Treg_CTLA4, expressing TNFRSF4 and TNFRSF9) 
decreased only in MPR patients. The proportion of naïve 
Tregs (Treg_SELL, expressing SELL and LEF1) decreased 
in both MPR and NMPR patients relative to TN patients 
(Fig.  3E). MPR patients consistently showed lower Treg 
exhausted signature than NMPR patients (Fig. 3G).

Our analysis revealed the expansion and activation of 
cytotoxic T cells and CD16+ NK cells, and reduction of 
immunosuppressive Tregs after treatment. The strength 
of these trends was associated with positive response to 
combined therapy.

Therapy promotes the differentiation of memory T cells 
into an effector phenotype
After combined therapy, memory CD8+ T cells (CD8_
IL7R) decreased while effector T cells increased (Fig. 3E). 

Fig. 3  T/NK cell remodeling after therapy. A UMAP plot of T/NK cells colored by clusters. B Heatmap of normalized expression of canonical T/NK 
cell marker genes among clusters. TRM, tissue-resident memory. C Boxplots of the average cytotoxic and exhausted signature scores for CD8+ 
T cells in TN (n = 3), MPR (n = 4), and NMPR (n = 8) patients. Center line indicates the median, lower, and upper hinges represent the 25th and 
75th percentiles, respectively, and whiskers denote 1.5× interquartile range. One-sided t-test was used. D Boxplots of the average cytotoxic and 
exhausted signature scores for NK cells in TN (n = 3), MPR (n = 4), and NMPR (n = 8) patients. One-sided t-test was used. E Boxplot showing cellular 
fractions of each T/NK cluster in TN (n = 3), MPR (n = 4), and NMPR (n = 8) patients. All differences with adjusted P < 0.10 are indicated. One-sided 
unpaired Wilcoxon test was used and the P values were adjusted by the FDR method. F Summary of selected ligand-receptor interactions from 
CellPhoneDB between cancer cells and CD16+ NK cells in MPR patients. G Boxplots of the average exhausted signature scores for Tregs in TN (n 
= 3), MPR (n = 4), and NMPR (n = 8) patients. One-sided t-test was used. H The developmental trajectory of CD8+ T cells inferred by Monocle2. 
The memory CD8+ T cells (CD8_IL7R) and effector memory (CD8_GZMK) T cells were the roots of differentiation, and the exhausted CD8+ T cells 
(CD8_HAVCR2) were in the end-point state. I Heatmap of the top differential genes in memory (CD8_IL7R) cells along the pseudo-time (lower 
panel). The distribution of CD8_IL7R cells during the transition (divided into 2 phases: resting and activated) in TN, MPR, and NMPR patients, along 
with the pseudo-time (upper panel)

(See figure on next page.)



Page 12 of 25Hu et al. Genome Medicine           (2023) 15:14 

Fig. 3  (See legend on previous page.)
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This suggested that treatment might directly induce the 
activation of memory T cells into a cytotoxic phenotype. 
To test this hypothesis, we performed trajectory analysis 
using Monocle2 [27]. One detected transition path went 
from Tem (CD8_GZMK) to Trm (CD8_GZMB) to Tex 
cells (CD8_HAVCR2; Fig.  3H). This path confirmed the 
sequential activation and exhaustion of CD8+ T cells 
in the TME. The analysis also showed that the cytotoxic 
cells may differentiate directly from Tm cells (CD8_
IL7R). Two origins of cytotoxic T cells were confirmed 
using RNA velocity algorithm (Additional file  2: Fig. 
S5C), another trajectory analysis algorithm [25]. When 
we delineated the distribution of the CD8_IL7R cells in 
pseuso-time, we noticed that the CD8_IL7R cells could 
be categorized into 2 phases (Fig.  3I). The CD8_IL7R 
cells in resting phase highly expressed NR4A1-3, while 
cytotoxic-related genes (GZMA, NKG7, and CCL5) and 
MHC-II genes (CD74 and HLA-DRA) were upregulated 
in the activated phase (Fig.  3I). The proportion of acti-
vated cells was increased after therapy, and more CD8_
IL7R cells were activated in MPR than NMPR samples 
(Fig. 3I and Additional file 2: Fig. S5D). Combined, these 
observations suggest that therapy could activate memory 
CD8+T cells into an effector phenotype, and the activa-
tion was most pronounced in MPR patients.

FCRL4+FCRL5+ memory B cells predict response to ICB 
and boost immunotherapy through activating CD4+ T 
cells
Studies indicate that B cells are actively involved in anti-
tumor immunity after neoadjuvant chemotherapy [61]. 
To assess the B cell diversity after therapy, we re-clus-
tered B cells into 7 subclusters (Fig.  4A and Additional 
file  2: Fig. S6A-B), including 5 subgroups of memory B 
cells (CD27+GPR183+IGHD-, B0_MS4A1, B1_IGHM, 
B2_HSP1A1, B4_FCRL4 and B5_CD83), 1 naïve B cell 
(CD27-IGHD+, B3_IGHD), and 1 germinal center (GC) 
B cell (B6_RGS13).

To characterize the function of different B cell sub-
sets, we compared their cell-type fractions in TN, MPR, 
and NMPR patients. Naïve B cells were increased after 
treatment, while memory B cells were slightly reduced 
(Additional file  2: Fig. S6C). Although memory B cells 

in general decreased following combined treatment, the 
FCRL4+FCRL5+ B cells (B4_FCRL4), defined as “atypi-
cal memory B cells” [62], exhibited a slightly increasing 
trend in MPR patients (Fig. 4B). The FCRL4 and FCRL5 
genes encode the Fc receptors for IgA and IgG, respec-
tively, and are drivers of human memory B cell activa-
tions [62]. B cells expressing FCRL4 have been previously 
reported to be associated with inflammation in rheu-
matoid arthritis [63] and viral infections [64]. Among 
TCGA-LUAD patients, we consistently found that 
patients with high expression of FCRL4 and FCRL5 had 
a better prognosis (Additional file  2: Fig. S6D-E). Also 
highly expressed in B4_FCRL4 cells were interferon-stim-
ulated genes (CCR1, STAT1, and GBP4), co-stimulatory 
molecule (CD86), and activated follicular B cell marker 
(BHLHE40) [65]. Consistently, immunofluorescence 
staining showed that FCRL4+FCRL5+ cells were much 
more enriched in MPR than NMPR samples (Fig. 4D and 
Additional file 2: Fig. S6F). Interestingly, we noticed that 
CD20+ B cells aggregated in TLS and FCRL4+FCRL5+ 
B cells located in the center of the TLS (Fig. 4D and Addi-
tional file 2: Fig. S6G). Taken together, our analysis sug-
gests that FCRL4+FCRL5+ B cells are associated with 
anti-tumor activity and a positive response to combined 
therapy.

We investigated whether the signature from 
FCRL4+FCRL5+ B cells could serve as a positive bio-
marker for immunotherapy. We first evaluated the 
B4_FCRL4 gene signature (Additional file  3: Table  S2) 
in our validation cohort. The signature scored signifi-
cantly higher in MPR patients before ICB combined with 
chemotherapy (Fig. 4E). We then performed similar anal-
yses on published datasets from two independent mela-
noma cohorts with ICB treatment [34, 66]. Although the 
melanoma cohorts were not in the neoadjuvant setting, 
the B4_FCRL4 signature also perform well in predict-
ing immunotherapy response. The B4_FCRL4 signature 
was higher in responders (complete response or partial 
response) than non-responders (stable disease or pro-
gressive disease) before and after therapy in both cohorts 
(Fig.  4F). Higher B4_FCRL4 signature was associated 
with improved survival in previously published “mela-
noma cohort 2” [34] (Fig. 4G). These results indicate that 

(See figure on next page.)
Fig. 4  B cell remodeling after therapy. A UMAP plot of B cells colored by clusters. B Boxplot showing cellular fractions of each B cluster in TN (n 
= 3), MPR (n = 4), and NMPR (n = 8) patients. Center line indicates the median, lower, and upper hinges represent the 25th and 75th percentiles, 
respectively, and whiskers denote 1.5× interquartile range. All differences with adjusted P < 0.10 are indicated. One-sided unpaired Wilcoxon test 
was used, and the P values were adjusted by the FDR method. C Violin plots of marker genes of B4_FCRL4 cells across clusters. D In situ multiplex 
immunofluorescence images of B4_FCRL4 cells in MPR and NMPR tumor tissues. E Violin and box plots of B4_FCRL4 signature in our validation 
cohort (9 patients were assessed as MPR and 12 as NMPR after surgery) before ICB + chemotherapy. One-sided unpaired Wilcoxon test was used. 
F Violin and box plots of B4_FCRL4 signature in responders (R) and non-responders (NR, removing SD patients) in advanced melanoma cohorts. 
Two-sided unpaired Wilcoxon test was used. G Kaplan–Meier survival curves of the signature of B4_FCRL4 in advanced melanoma cohort 2. Survival 
curves were compared by the log-rank test. H Summary of selected ligand-receptor interactions from CellPhoneDB among B4_FCRL4 cells, Tfhs and 
CD8+ T cells
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the signature of FCRL4+FCRL5+ B cells can be used as 
biomarker for predicting response to ICB.

To explore the underlying mechanisms for the activa-
tion and function of FCRL4+FCRL5+ B cells, we per-
formed NicheNet analysis [29], which predicts ligands 

driving the transcriptomic changes of target cells. Sev-
eral IFNα genes, tumor necrosis factor (TNF), and IL27 
were predicted as possible ligands driving the phenotype 
of B4_FCRL4 cells (Additional file  2: Fig. S6H). Cell-
PhoneDB analysis revealed that FCRL4+ FCRL5+ B cells 

Fig. 4  (See legend on previous page.)
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could interact with Tfhs through ligand-receptor pairs: 
CXCL13-CXCR5, CD40-CD40LG, and CD28-CD86 
(Fig.  4H). CXCL13-CXCR5 interaction between B cells 
and Tfhs is essential for the formation of TLS [67]. It has 
been reported that tumor-specific B cell drive activation 
of tumor-specific Tfhs and activated Tfhs could enhance 
the effector function of CD8+ T cells by secreting IL21 
[55]. In our study, we also noticed that the IL21-IL21R 
interaction was significantly enriched between Tfhs and 
CD8+ T cells (Fig. 4H). The data suggest that in the TME 
of immunotherapy responders, FCRL4+ FCRL5+ B cells 
are driven by IFNα, TNF, and IL27 signals, and Tfhs are 
activated by these B cells to enhance anti-tumor immu-
nity through secreting IL21.

Patrolling monocytes were recruited by CX3CL1 
and predict immunotherapy response
The myeloid component in the TME exhibited remark-
able heterogeneity and accordingly was categorized 
into 11 clusters, including 2 subtypes of monocyte, 6 
subtypes of macrophage, and 3 subtypes of DC accord-
ing to canonical marker genes (Fig.  5A and Additional 
file  2: Fig. S7A). We first focused on the monocytes. 
Mono_CX3CR1 highly expressed monocyte markers 
(FCN1, VCAN, S100A8, and S100A9), naïve marker 
(SELL), and lower MHC-II molecules (Fig.  5B, C), rep-
resenting a “naïve-like” status. Mono_VEGFA had lower 
expression of monocyte markers, higher macrophage 
markers (MRC1, CD163, and MSR1), and MCH-II mole-
cules than Mono_CX3CR1 cells, suggesting a “pre-mac-
rophage” status (Fig. 5B, C). Trajectory analysis validated 
that Mono_VEGFA was an intermediate phenotype 
between naïve monocytes and macrophages (Fig.  5D). 
Mono_VEGFA highly expressed VEGFA, a pro-angio-
genesis factor, reflecting an immunosuppressive pheno-
type (Fig. 5B, C). Consistently, Mono_VEGFA cells were 
decreased in MPR patients (Fig. 5E), and the expression 
of VEGFA was downregulated in MPR patients (Addi-
tional file 2: Fig. S7B).

Mono_CX3CR1 cells closely resembled non-classical 
“patrolling monocytes (PMos)” (CD14+CD16+CX3CR1+, 
Fig.  5C) [42]. Previous studies show that PMos scavenge 
tumor material from the lung vasculature and promote NK 
cell recruitment and activation [42]. Mono_CX3CR1 cells 
were of increased abundance in MPR patients (Fig.  5E). 
Mono_CX3CR1 cells also highly expressed CFP (Fig.  5C 
and Additional file  2: Fig. S7C), which has been reported 
to suppress breast cancer growth by inducing apoptosis 
[68]. The expression of CFP was strongly downregulated 
in TCGA-LUAD patients compared to normal lung tissues 
(Additional file 2: Fig. S7D), and higher CFP expression was 
associated with better survival (Additional file 2: Fig. S7E). 
The expression of CFP was significantly correlated with the 
apoptosis signature in TCGA-LUAD patients, and Mono_
CX3CR1 cells in MPR patients had significantly higher 
expression of CFP than TN and NMPR patients (Fig. 5F, G).

We then investigate whether the gene signature from 
Mono_CX3CR1 monocytes (Additional file  3: Table  S2) 
could be used as a biomarker to predict ICB response 
using bulk RNA-seq data. Higher Mono_CX3CR1 sig-
nature was observed in MPR patients in our validation 
cohort and responders from two independent melanoma 
cohorts (Fig. 5H, I). Higher Mono_CX3CR1 signature was 
associated with improved survival in Melanoma dataset 2 
[34] (Fig. 5J). Cell-cell interaction analysis showed that the 
CX3CL1-CX3CR1 pair was significantly enriched between 
Mono_CX3CR1 cells and cancer cells from MPR patients 
(Fig.  5K), indicating that CX3CL1 expression in cancer 
cells attract Mono_CX3CR1 monocytes in MPR patients. 
Our analysis identified CX3CR1+ monocytes as associated 
with anti-tumor activity, and another immunosuppressive 
VEGFA+ monocytes as associated with poor response.

Combined therapy expanded tissue‑resident macrophages, 
reprogramed TAM into an M0 phenotype, and inhibited 
the immunosuppressive function in MPR patients
We next focused on the macrophages. Macro_FABP4 
cells are tissue-resident alveolar macrophages (AM) with 

Fig. 5  Monocyte remodeling after therapy. A UMAP plot of myeloid cells colored by clusters. B Heatmap of normalized expression of monocyte/
macrophage marker genes among clusters. C Heatmap of selected marker genes of defined monocyte clusters. D The developmental trajectory 
of monocyte/macrophages inferred by Monocle2. The Mono_CX3CR1 cells were the roots of trajectory, and differentiated into M1-like (Macro_
CXCL9) or M2-like (Macro_SELENOP and Macro_C1QA) cells. E Boxplot showing cellular fractions of each monocyte cluster in TN (n = 3), MPR (n 
= 4), and NMPR (n = 8) patients. Center line indicates the median, lower, and upper hinges represent the 25th and 75th percentiles, respectively, 
and whiskers denote 1.5× interquartile range. All differences with P < 0.10 are indicated. One-sided unpaired Wilcoxon test was used. F Scatter 
diagram showing a significantly positive correlation between expression level of CFP and apoptosis signature in TCGA-LUAD patients. P values were 
determined by two-sided Pearson correlation test. G Boxplots of the average expression of CFP in Mono_CX3CR1 cells in TN (n = 3), MPR (n = 4), 
and NMPR (n = 8) patients. One-sided t-test was used. H Violin and box plots of Mono_CX3CR1 signature in our validation cohort (9 patients were 
assessed as MPR and 12 as NMPR after surgery) before ICB + chemotherapy. One-sided unpaired Wilcoxon test was used. I Violin and box plots of 
Mono_CX3CR1 signature in responders (R) and non-responders (NR, removing SD patients) in advanced melanoma cohorts. Two-sided unpaired 
Wilcoxon test was used. J Kaplan–Meier survival curve of the signature of Mono_CX3CR1 in melanoma cohort 2. Survival curves were compared by 
the Log-Rank test. K Summary of selected ligand-receptor interactions from CellPhoneDB among Mono_CX3CR1 cells, cancer cells, and NK cells in 
MPR patients

(See figure on next page.)
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the expression of the canonical AM markers (FABP4, 
MCEMP1 and MARCO; Fig.  5B) [69]. Concordant 
with its tissue repair function [70], Macro_FABP4 AMs 
were significantly elevated in post-treatment patients, 
although to a greater extent in MPR patients (Fig.  6A). 
Given tissue repair function of AT2 cells and the increase 

of AT2 cells after therapy (Additional file  2: Fig. S3F), 
AMs may work together with AT2 cells to regenerate 
normal lung structure.

Other macrophage subtypes show similarity to 
known tumor-associated macrophages (TAM). Macro_
SPP1 macrophage has been previously reported to 

Fig. 5  (See legend on previous page.)
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be associated with tumor angiogenesis [71] and to 
facilitate immune escape by upregulating PD-L1 [72]. 
Macro_SELENOP macrophage was previously reported 
to have anti-inflammation roles [73]. In contrast, 
Macro_CXCL9 cells overexpressed proinflammatory 
factors (CXCL9 and CXCL10) that could attract T cells, 
NK cells, and DCs [74]. The M2-like Macro_SPP1 mac-
rophages decreased after therapy, while Macro_SELE-
NOP macrophages had an increased trend in NMPR 
patients (Fig. 6A).

Macrophages are traditionally classified into three 
subtypes: M0 (non-polarized or neutral), M1 (proin-
flammatory or anti-tumor), or M2 (anti-inflammatory 
or pro-tumor). To better characterize the phenotype 
of macrophage subsets, we calculated M0, M1, and M2 
signature scores based on the gene signatures from CIB-
ERSORT [22]. As expected, the AM exhibited a M0-like 
phenotype, and both Macro_SPP1, Macro_SELENOP, 
and Macro_C1QA had a stronger M2 signature (Fig. 6B). 
Only Macro_CXCL9 cells showed a high M1 signature 

Fig. 6  Macrophage and dendritic cell remodeling after therapy. A Boxplot showing cellular fractions of each macrophage and DC cluster in TN (n 
= 3), MPR (n = 4), and NMPR (n = 8) patients. Center line indicates the median, lower, and upper hinges represent the 25th and 75th percentiles, 
respectively, and whiskers denote 1.5× interquartile range. All differences with adjusted P < 0.10 are indicated. One-sided unpaired Wilcoxon test 
was used, and the P values were adjusted by the FDR method. B Heatmap of module scores of M0, M1, and M2 signatures among macrophage 
clusters. C Boxplots of average M0, M1, and M2 signature scores for macrophages in TN (n = 3), MPR (n = 4), and NMPR (n = 8) patients. One-sided 
t-test was used. D Heatmap of normalized expression of DC marker genes among clusters. E The developmental trajectory of DCs inferred by 
Monocle2. mregDCs (DC_LAMP3) could derive from cDC1s (DC_XCR1) or cDC2s (DC_CD1C). F Boxplots of average antigen presentation signature 
scores for DCs in TN (n = 2, one sample with less than 10 DC cells was removed), MPR (n = 4), and NMPR (n = 8) patients. One-sided t-test was 
used. G Summary of selected ligand-receptor interactions from CellPhoneDB among cancer cells and cDC2s (DC_CD1C) cells
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(Fig. 6B). Lineage tracing analysis suggested two distinct 
differentiation paths for monocytes. One path leads to 
M1-like Macro_CXCL9 cells and another path differen-
tiated into M2-like Macro_SELENOP and Macro_SPP1 
cells (Fig. 5D).

The M1 signature of macrophages would generally be 
expected to increase in responders after immunotherapy, 
while the M2 would generally be expected to decrease 
in responders after immunotherapy. Indeed, the M2 
signature of macrophages decreased in MPR patients. 
However, both the M1 signature and M1-like subset 
(Macro_CXCL9) did not exhibit an increasing trend in 
MPR patients, and even decreased after therapy (Fig. 6A, 
C). Surprisingly, compared to the TN patients, the M0 
signature increased in MPR patients (Fig.  6C). These 
analyses suggest that combined therapy induces expan-
sion of tissue regenerative macrophages and reprograms 
TAM into a neutral instead of an anti-tumor phenotype 
in MPR patients, but inhibits the immunosuppressive 
function only in MPR patients. Suppressing the M2-like 
function of TAMs may be more effective than promoting 
M1-like activity to enhance immunotherapy response.

Dendritic cells were activated by therapy and expanded 
in MPR patients
The DCs were classified into 3 subtypes, including con-
ventional type I DCs (cDC1, DC_XCR1), conventional 
type II DCs (cDC2, DC_CD1C), and recently described 
LAMP3+ DCs (DC_LAMP3) (Fig.  6D) [75]. cDC1 and 
cDC2 have been previously reported to activate CD8+ T 
cells and CD4+ T cells, respectively [75]. LAMP3+ DC 
was reported to be “mature DCs enriched in immunoreg-
ulatory molecules” (mregDC) [76] due to expression of 
mature (LAMP3), migration (CCR7 and FSCN1) and 
immunoregulatory (CD274, PDCD1LG2, and CD200) 
markers, and downregulation of Toller-like receptors 
(TLRs).

mregDCs have been reported to interact with tumor-
infiltrating Treg cells or to inhibit CD8+ T cell-mediated 
tumor immunity by IL-4 stimulation [76]. Trajectory 
analysis indicated that mregDCs may be generated from 

both cDC1s and cDC2s (Fig. 6E), consistent with recent 
reports that mregDCs are derived from cDC1s and 
cDC2s upon uptake of tumor antigens [30, 76]. After 
combined therapy, the fractions of cDC1s and cDC2s 
were increased in MPR patients (Fig.  6A). In addition, 
the antigen-presenting signature [23] of DCs was sig-
nificantly increased after therapy, especially for MPR 
patients (Fig.  6F), suggesting that DCs were activated 
after therapy. The DC_CD1C cells expressed CX3CR1 
(Fig.  6D), and the CX3CL1-CX3CR1 interaction was 
significantly enriched between DC_CD1C cells and can-
cer cells from MPR patients (Fig. 6G). The data indicates 
that the DCs are activated after therapy and recruited in 
MPR patients, which could contribute to the activation of 
CD8+ and CD4+ T cells in the TME.

Aged neutrophils decreased in MPR patients and recruited 
SPP1+ TAMs through CCL3 and CCL4
Neutrophils were divided into 4 subclusters, includ-
ing 2 mature subsets (CD16+CXCR2highCXCR4low; 
Neu_S100A12 and Neu_OSM), and 2 aged subsets 
(CD16+CXCR2lowCXCR4high; Neu_CCL3 and Neu_
IFIT3) (Fig. 7A, B) [77]. Trajectory analysis indicated that 
the Neu_S100A12 subcluster was the root of the trajec-
tory and that the Neu_CCL3 and Neu_IFIT3 subclusters 
were end-point states (Fig. 7C). Along this trajectory, the 
expression of CXCR2 decreased while CXCR4 increased 
in pseudo-time (Fig. 7D). Mature Neu_S100A12 neutro-
phils highly expressed genes associated with granules 
(S100A8, S100A9, and S100A12), which when released 
play a critical role in the proinflammatory response 
[78]. Mature Neu_OSM neutrophils were characterized 
by high expression of the cytokine OSM, which could 
promote production of proinflammatory molecules 
[79]. Among the aged subsets, Neu_CCL3 cells overex-
pressed multiple chemokines, including CCL3, CCL4, 
and CXCL8. Serum CXCL8 is reported to be a strong 
predictor of poor outcome in immunotherapy [80], con-
sistent with lower expression of CXCL8 in Neu_CCL3 
cells in MPR than in TN and NMPR patients (Fig.  7E). 
Neu_IFIT3 cells expressed interferon-stimulated genes 

Fig. 7  Neutrophil remodeling after therapy. A UMAP plot of neutrophils colored by clusters. B Heatmap of normalized expression of neutrophil 
marker genes among clusters. NETs, neutrophil extracellular traps; ISGs, interferon-stimulated genes. C The developmental trajectory of neutrophils 
inferred by Monocle2. The Neu_S100A12 cells were the roots of trajectory, and differentiated into Neu_CCL3 or Neu_IFIT3 cells. D Two-dimensional 
plots showing the dynamic expression of CXCR2 and CXCR4 during the neutrophils aging along the pseudo-time. E Boxplot of average expression 
of CXCL8 (IL8) in Neu_CCL3 cells in TN (n = 3), MPR (n = 4), and NMPR (n = 7, one sample with less than 10 Neu_CCL3 cells was removed) 
patients. One-sided t-test was used. F Boxplot showing cellular fractions of each neutrophil cluster in TN (n = 3), MPR (n = 4), and NMPR (n = 8) 
patients. Center line indicates the median, lower, and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers denote 
1.5× interquartile range. All differences with adjusted P < 0.05 are indicated. One-sided unpaired Wilcoxon test was used, and the P values were 
adjusted by the FDR method. G Heatmap showing potential ligands driving the phenotype of Neu_CCL3 neutrophils. H Summary of selected 
ligand-receptor interactions from CellPhoneDB between Neu_CCL3 neutrophils and Macro_SPP1 macrophages. I Scatter diagram showing a 
significantly positive correlation between the Neu_CCL3 signature and Macro_SPP1 signature in TCGA-LUAD patients. P values were determined by 
two-sided Pearson correlation test. J Inferred regulation network between Neu_CCL3 neutrophils and Macro_SPP1 macrophages

(See figure on next page.)
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(IFIT1-3, RSAD2, and MX1). Immune checkpoints 
(CD274 and IDO1) were upregulated in the aged clusters 
(Fig.  7B), reflecting an immunomodulatory phenotype. 
We found that the expression of the ELANE (elastase) 
gene, which has been reported to have an anti-cancer 
function in human neutrophils [81], was negative in all 

neutrophils (Fig. 7B). Pathway analysis indicated mature 
neutrophils exhibited enrichment of pathways of neu-
trophil activation, degranulation, and chemotaxis, while 
pathways of interferon signaling, translational initiation, 
and response to interleukin-1 were enriched in aged neu-
trophils (Additional file 2: Fig. S8A). Regulatory network 

Fig. 7  (See legend on previous page.)
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analysis by SCENIC [31] showed that regulators KLF6, 
SPI1, FOS, and CEBPD were downregulated during neu-
trophil aging (Additional file 2: Fig. S8B).

To explore the reprogramming of neutrophils after 
combined therapy, we compared abundance of neutro-
phil subtype fractions before and after treatment. Aged 
neutrophils decreased after treatment in MPR patients 
and increased in NMPR patients (Additional file  2: Fig. 
S8C). When the neutrophils were divided into mature 
and aged phases in pseudo-time, results were similar 
(Additional file 2: Fig. S8D-E). Of all aged neutrophil sub-
clusters, Neu_CCL3 cells were most depleted in MPR 
patients (Fig. 7F), indicating a suppressive phenotype in 
the TME.

Finally, we explored the mechanisms by which sub-
sets of neutrophils were reprogrammed during therapy. 
NicheNet analysis predicted that SPP1, IFNγ, and IL1B 
ligands drive the specific phenotype of aged Neu_CCL3 
cells (Fig. 7G), and IFNα ligands drive the phenotype of 
aged Neu_IFIT3 cells (Additional file  2: Fig. S8F). SPP1 
was a key marker of Macro_SPP1 macrophages, so we 
evaluated the cell-cell interactions between aged Neu_
CCL3 neutrophils and Macro_SPP1 macrophages. The 
SPP1-CD44 and IL1B-ADRB2 pairs were significantly 
enriched in the two cell types (Fig.  7H). It has been 
reported that CD44 regulates neutrophil phagocyto-
sis and IL-8 production [82], and activation of ADRB2 
(β2-adrenoceptor) could cause release of proinflamma-
tory S100A8/A9 in neutrophils [83]. In addition, CCL3 
and CCL4 secreted by aged Neu_CCL3 cells were pre-
dicted to recruit Macro_SPP1 macrophages by CCL3-
CCR1, CCL3-CCR5, and CCL4-CCR5 pairs (Fig.  7H). 
The Neu_CCL3 signature was significantly correlated 
with the Macro_SPP1 signature in TCGA-LUAD patients 
(Fig. 7I). These indicates that Macro_SPP1 macrophages 
are involved in production of aged Neu_CCL3 neu-
trophils and that aged Neu_CCL3 neutrophils in turn 
recruit Macro_SPP1 macrophages (Fig.  7J). Lack of the 
Neu_CCL3-Macro_SPP1 interaction may lead to the 
decrease of Macro_SPP1 macrophages and Neu_CCL3 
neutrophils in MPR patients (Figs. 6A and 7F).

Discussion
Improving response efficacy and identifying robust bio-
markers are the major challenges for current immuno-
therapy. Although ICB therapy has been used in advanced 
NSCLC for years, many patients are refractory to treat-
ment. The transcriptional characteristics underlying ICB 
resistance in NSCLC have not been characterized due to 
the difficulty of sample acquisition. The advent of neoad-
juvant immunotherapy for resectable NSCLC provides 
the opportunity to collect tumor tissues before and after 
treatment and pathologic assessment of resected tumor 

tissues enables more precise response information com-
pared to traditional RECIST classifications. Although 
two scRNA-seq studies regarding NSCLC immunother-
apy have been reported recently, they focus on T cells 
[15, 56]. In this study, we examined single-cell transcrip-
tomes from resectable NSCLC before and after combina-
tion treatment of PD-1 blockade and chemotherapy, and 
analyzed the entire TME across pathologic responses to 
investigate immune system and cancer responses to ther-
apy (Fig. 8).

We uncovered transcriptional signatures of cancer 
cells specific to different pathologic responses. MHC-II 
genes were highly expressed in malignant cells from MPR 
patients. The important role of antigen presentation via 
the MHC-II pathway in MPR patients was also demon-
strated by CD20+ B cells and cDC2s presenting tumor 
antigens to CD4+ T cells by MHC-II. Further, CD4+ 
Tfhs were activated by CD40-CD40LG and CD28-CD86 
interactions in MPR patients. This suggests that although 
MHC-II expression is usually restricted to APCs, it could 
also be expressed intrinsically in a subset of cancer cells 
[84] or induced by IFNγ [43]. Given the low expression 
of MHC-II in TN patients, it is likely that the expression 
of MHC-II genes was induced by IFNγ secreted by effec-
tor T or NK cells as a result of therapy. Recent studies 
report that inhibition of histone deacetylases (HDAC) 
and mitogen-activated protein kinase kinase (MEK) 
enhanced MHC-II expression in NSCLC cell lines [84]. 
Therefore, promoting antigen presentation via the MHC-
II pathway may be a strategy to enhance response to 
immunotherapy.

In NMPR patients, we observed overexpression of 
enzymes involved in estrogen metabolism in cancer cells, 
which resulted in the elevation of estradiol in serum. 
Previous studies have indirectly suggested a negative 
effect for estradiol in immunotherapy. A meta-analysis of 
11,351 patients treated with ICB from 20 trials showed 
that ICB was significantly less effective in females than 
males and that females had no significant survival ben-
efits in NSCLC [85]. Therefore, elevation of estradiol 
during therapy may be a biomarker for a poor response 
to therapy and raises the possibility that a regimen that 
combined anti-estrogen with ICB may improve response. 
Indeed, anti-estrogen had been explored in EGFR muta-
tion positive NSCLC, although not in combination with 
ICB. Phase II trials failed to show a survival benefit for 
anti-estrogen combined with targeted therapy [86, 87], 
and therefore a phase III trial was not pursued. Future 
studies are needed to explore the efficacy of anti-estrogen 
combined with ICB.

Patients with different pathological responses 
showed remarkable differences in the TME remod-
eling after therapy. We hypothesize that there may 
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be a “positive feedback” immune response in good 
responders (MPR patients), and a “negative feedback” 
response in poor responders (NMPR patients). ICB 
activates CD8+ T cells and NK cells to release multiple 
cytokines, thereby inducing expression of MHC-II in 
cancer cells and activating B cells and DCs to present 
tumor antigens. The reprogrammed cancer cells then 
present the tumor antigens to CD4+ Tfhs via MHC-
II and release CX3CL1 to recruit NK cells, PMos and 
cDC2s. The “positive feedback” boosts the anti-tumor 
immune response. In good responders, simultane-
ous with the recruitment and activation of cytotoxic 
cells into the TME, immunosuppressive cells (Tregs, 
CCL3+ neutrophils, and SPP1+ TAMs) are reduced 
in the TME. In poor responders, anti-tumor immu-
nity and cytotoxic cells are activated at the beginning 
of therapy, but the immunosuppressive cells were not 
adequately remodeled and become more abundant 
in the TME. Worse still, the CCL3+ neutrophils may 

interact with SPP1+ TAMs to promote expansion 
of each other. In poor responders, cancer cells limit 
the immune response by increasing estradiol levels. 
Adjunctive therapies that decrease the immunosup-
pressive cells or factors in the TME to allow a return to 
a positive feedback cycle may greatly improve response 
to immunotherapy.

There were three major limitations to this study. First, 
due to the difficulty of acquiring NSCLC tumor sam-
ples, the patient sample size was small. Therefore, it 
was difficult to achieve statistical separation to support 
of conclusions on the patient level, and there was a risk 
that patient variability may be more pronounced than 
biological effects. Second, the patients in this study 
received combination immunotherapy and chemo-
therapy. Therefore, mechanisms revealed by our study 
may provide novel targets or biomarkers that are inde-
pendent of a specific therapy. Third, because neutro-
phils were nearly absent in public scRNA-seq data of 

Fig. 8  Summary of TME dynamics in NSCLC during ICB plus chemotherapy. After ICB plus chemotherapy, the phenotype of immune cells 
was remodeled, and normal epithelial cells expanded in the TME. The cytotoxic ability of effector T cells was significantly elevated; however, 
the exhausted markers were also increased. The memory CD8+ T cells were activated into an effector phenotype. Therapy enhanced the 
antigen-presenting function of DCs. Except these common features, major pathologic responders (MPRs), and non-MPRs had distinct characteristics 
of TME. The residual cancer cells in MPRs expressed MHC-II molecules to present tumor antigens themselves, and secreted CX3CL1 to recruit PMos, 
cDC2s, and CD16+ NK cells. PMos secreted CFP to promote apoptosis of cancer cells. Tfhs released CXCL13 to recruit CD20+ B cells and these B 
cells aggregated in the TME. IFNα and TNF from cDC2s drove the production of FCRL4+FCRL5+ memory B cells. The FCRL4+FCRL5+ memory B 
cells in turn activated Tfhs by CD86-CD28 and CD40-CD40LG interaction. Then, the activated Tfhs secreted IL21 to enhance release GrB from effector 
T cells though binding to IL21R. These interactions positively boosted the anti-tumor response. Meanwhile, suppressive Tregs and M2 signature of 
TAMs were decreased in MPRs. In non-MPRs, aberrant estrogen metabolism caused elevated estradiol in the TME. The TME in non-MPRs was still 
suppressive, with no decrease of M2 signature of TAMs and increase of VEGFA+ monocytes and suppressive signature of Tregs. In addition, the 
SPP1+ TAMs and CCL3+ neutrophils interacted with each other to promote expansion of themselves: SPP1+ TAMs secreted SPP1 and IL1B to 
induce the production of CCL3+ neutrophils, and CCL3+ neutrophils in turn to attract SPP1+ TAMs by CCL3 and CCL4
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lung cancer, independent validations of the hypothesis 
regarding CCL3+ neutrophils and SPP1+ TAMs were 
not available. Interestingly, a recent study of liver tumor 
also described that the co-enrichment of CCL3+ neu-
trophils and SPP1+ macrophages was associated with 
poor prognosis [88], indicating a similar mechanism 
across different cancer types.

Conclusions
scRNA-seq analysis of resectable NSCLC revealed the 
dynamics of the TME before and after neoadjuvant ICB 
combined with chemotherapy and distinct TME prop-
erties between good responders and poor respond-
ers. We identified serum estradiol and two cell types 
in the TME (FCRL4+ FCRL5+ memory B cells and 
CD16+CX3CR1+ monocytes) that could serve as bio-
markers for treatment response. Further, our study cap-
tured a high proportion of neutrophils, revealing great 
heterogeneity during immunotherapy. The dataset will 
be a valuable ongoing resource for cancer and neutro-
phil biology.
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